Tauwehe
3\left(2-x\right)\left(x+6\right)
Aromātai
3\left(2-x\right)\left(x+6\right)
Graph
Tohaina
Kua tāruatia ki te papatopenga
3\left(-x^{2}-4x+12\right)
Tauwehea te 3.
a+b=-4 ab=-12=-12
Whakaarohia te -x^{2}-4x+12. Whakatauwehea te kīanga mā te whakarōpū. Tuatahi, me tuhi anō te kīanga hei -x^{2}+ax+bx+12. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
1,-12 2,-6 3,-4
I te mea kua tōraro te ab, he tauaro ngā tohu o a me b. I te mea kua tōraro te a+b, he nui ake te uara pū o te tau tōraro i tō te tōrunga. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua -12.
1-12=-11 2-6=-4 3-4=-1
Tātaihia te tapeke mō ia takirua.
a=2 b=-6
Ko te otinga te takirua ka hoatu i te tapeke -4.
\left(-x^{2}+2x\right)+\left(-6x+12\right)
Tuhia anō te -x^{2}-4x+12 hei \left(-x^{2}+2x\right)+\left(-6x+12\right).
x\left(-x+2\right)+6\left(-x+2\right)
Tauwehea te x i te tuatahi me te 6 i te rōpū tuarua.
\left(-x+2\right)\left(x+6\right)
Whakatauwehea atu te kīanga pātahi -x+2 mā te whakamahi i te āhuatanga tātai tohatoha.
3\left(-x+2\right)\left(x+6\right)
Me tuhi anō te kīanga whakatauwehe katoa.
-3x^{2}-12x+36=0
Ka taea te huamaha pūrua te tauwehe mā te whakamahi i te huringa ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), ina ko x_{1} me x_{2} ngā otinga o te whārite pūrua ax^{2}+bx+c=0.
x=\frac{-\left(-12\right)±\sqrt{\left(-12\right)^{2}-4\left(-3\right)\times 36}}{2\left(-3\right)}
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-\left(-12\right)±\sqrt{144-4\left(-3\right)\times 36}}{2\left(-3\right)}
Pūrua -12.
x=\frac{-\left(-12\right)±\sqrt{144+12\times 36}}{2\left(-3\right)}
Whakareatia -4 ki te -3.
x=\frac{-\left(-12\right)±\sqrt{144+432}}{2\left(-3\right)}
Whakareatia 12 ki te 36.
x=\frac{-\left(-12\right)±\sqrt{576}}{2\left(-3\right)}
Tāpiri 144 ki te 432.
x=\frac{-\left(-12\right)±24}{2\left(-3\right)}
Tuhia te pūtakerua o te 576.
x=\frac{12±24}{2\left(-3\right)}
Ko te tauaro o -12 ko 12.
x=\frac{12±24}{-6}
Whakareatia 2 ki te -3.
x=\frac{36}{-6}
Nā, me whakaoti te whārite x=\frac{12±24}{-6} ina he tāpiri te ±. Tāpiri 12 ki te 24.
x=-6
Whakawehe 36 ki te -6.
x=-\frac{12}{-6}
Nā, me whakaoti te whārite x=\frac{12±24}{-6} ina he tango te ±. Tango 24 mai i 12.
x=2
Whakawehe -12 ki te -6.
-3x^{2}-12x+36=-3\left(x-\left(-6\right)\right)\left(x-2\right)
Tauwehea te kīanga taketake mā te whakamahi i te ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Me whakakapi te -6 mō te x_{1} me te 2 mō te x_{2}.
-3x^{2}-12x+36=-3\left(x+6\right)\left(x-2\right)
Whakamāmātia ngā kīanga katoa o te āhua p-\left(-q\right) ki te p+q.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}