Whakaoti mō x (complex solution)
x=\frac{-\sqrt{23}i+11}{6}\approx 1.833333333-0.799305254i
x=\frac{11+\sqrt{23}i}{6}\approx 1.833333333+0.799305254i
Graph
Tohaina
Kua tāruatia ki te papatopenga
-3x^{2}+11x=12
Me tāpiri te 11x ki ngā taha e rua.
-3x^{2}+11x-12=0
Tangohia te 12 mai i ngā taha e rua.
x=\frac{-11±\sqrt{11^{2}-4\left(-3\right)\left(-12\right)}}{2\left(-3\right)}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi -3 mō a, 11 mō b, me -12 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-11±\sqrt{121-4\left(-3\right)\left(-12\right)}}{2\left(-3\right)}
Pūrua 11.
x=\frac{-11±\sqrt{121+12\left(-12\right)}}{2\left(-3\right)}
Whakareatia -4 ki te -3.
x=\frac{-11±\sqrt{121-144}}{2\left(-3\right)}
Whakareatia 12 ki te -12.
x=\frac{-11±\sqrt{-23}}{2\left(-3\right)}
Tāpiri 121 ki te -144.
x=\frac{-11±\sqrt{23}i}{2\left(-3\right)}
Tuhia te pūtakerua o te -23.
x=\frac{-11±\sqrt{23}i}{-6}
Whakareatia 2 ki te -3.
x=\frac{-11+\sqrt{23}i}{-6}
Nā, me whakaoti te whārite x=\frac{-11±\sqrt{23}i}{-6} ina he tāpiri te ±. Tāpiri -11 ki te i\sqrt{23}.
x=\frac{-\sqrt{23}i+11}{6}
Whakawehe -11+i\sqrt{23} ki te -6.
x=\frac{-\sqrt{23}i-11}{-6}
Nā, me whakaoti te whārite x=\frac{-11±\sqrt{23}i}{-6} ina he tango te ±. Tango i\sqrt{23} mai i -11.
x=\frac{11+\sqrt{23}i}{6}
Whakawehe -11-i\sqrt{23} ki te -6.
x=\frac{-\sqrt{23}i+11}{6} x=\frac{11+\sqrt{23}i}{6}
Kua oti te whārite te whakatau.
-3x^{2}+11x=12
Me tāpiri te 11x ki ngā taha e rua.
\frac{-3x^{2}+11x}{-3}=\frac{12}{-3}
Whakawehea ngā taha e rua ki te -3.
x^{2}+\frac{11}{-3}x=\frac{12}{-3}
Mā te whakawehe ki te -3 ka wetekia te whakareanga ki te -3.
x^{2}-\frac{11}{3}x=\frac{12}{-3}
Whakawehe 11 ki te -3.
x^{2}-\frac{11}{3}x=-4
Whakawehe 12 ki te -3.
x^{2}-\frac{11}{3}x+\left(-\frac{11}{6}\right)^{2}=-4+\left(-\frac{11}{6}\right)^{2}
Whakawehea te -\frac{11}{3}, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -\frac{11}{6}. Nā, tāpiria te pūrua o te -\frac{11}{6} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}-\frac{11}{3}x+\frac{121}{36}=-4+\frac{121}{36}
Pūruatia -\frac{11}{6} mā te pūrua i te taurunga me te tauraro o te hautanga.
x^{2}-\frac{11}{3}x+\frac{121}{36}=-\frac{23}{36}
Tāpiri -4 ki te \frac{121}{36}.
\left(x-\frac{11}{6}\right)^{2}=-\frac{23}{36}
Tauwehea x^{2}-\frac{11}{3}x+\frac{121}{36}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{11}{6}\right)^{2}}=\sqrt{-\frac{23}{36}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x-\frac{11}{6}=\frac{\sqrt{23}i}{6} x-\frac{11}{6}=-\frac{\sqrt{23}i}{6}
Whakarūnātia.
x=\frac{11+\sqrt{23}i}{6} x=\frac{-\sqrt{23}i+11}{6}
Me tāpiri \frac{11}{6} ki ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}