Whakaoti mō x
x=4
x=13
Graph
Tohaina
Kua tāruatia ki te papatopenga
-x^{2}+17x-52=0
Whakawehea ngā taha e rua ki te 3.
a+b=17 ab=-\left(-52\right)=52
Hei whakaoti i te whārite, whakatauwehea te taha mauī mā te whakarōpū. Tuatahi, me tuhi anō te taha mauī hei -x^{2}+ax+bx-52. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
1,52 2,26 4,13
I te mea kua tōrunga te ab, he ōrite te tohu o a me b. I te mea kua tōrunga te a+b, he tōrunga hoki a a me b. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua 52.
1+52=53 2+26=28 4+13=17
Tātaihia te tapeke mō ia takirua.
a=13 b=4
Ko te otinga te takirua ka hoatu i te tapeke 17.
\left(-x^{2}+13x\right)+\left(4x-52\right)
Tuhia anō te -x^{2}+17x-52 hei \left(-x^{2}+13x\right)+\left(4x-52\right).
-x\left(x-13\right)+4\left(x-13\right)
Tauwehea te -x i te tuatahi me te 4 i te rōpū tuarua.
\left(x-13\right)\left(-x+4\right)
Whakatauwehea atu te kīanga pātahi x-13 mā te whakamahi i te āhuatanga tātai tohatoha.
x=13 x=4
Hei kimi otinga whārite, me whakaoti te x-13=0 me te -x+4=0.
-3x^{2}+51x-156=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-51±\sqrt{51^{2}-4\left(-3\right)\left(-156\right)}}{2\left(-3\right)}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi -3 mō a, 51 mō b, me -156 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-51±\sqrt{2601-4\left(-3\right)\left(-156\right)}}{2\left(-3\right)}
Pūrua 51.
x=\frac{-51±\sqrt{2601+12\left(-156\right)}}{2\left(-3\right)}
Whakareatia -4 ki te -3.
x=\frac{-51±\sqrt{2601-1872}}{2\left(-3\right)}
Whakareatia 12 ki te -156.
x=\frac{-51±\sqrt{729}}{2\left(-3\right)}
Tāpiri 2601 ki te -1872.
x=\frac{-51±27}{2\left(-3\right)}
Tuhia te pūtakerua o te 729.
x=\frac{-51±27}{-6}
Whakareatia 2 ki te -3.
x=-\frac{24}{-6}
Nā, me whakaoti te whārite x=\frac{-51±27}{-6} ina he tāpiri te ±. Tāpiri -51 ki te 27.
x=4
Whakawehe -24 ki te -6.
x=-\frac{78}{-6}
Nā, me whakaoti te whārite x=\frac{-51±27}{-6} ina he tango te ±. Tango 27 mai i -51.
x=13
Whakawehe -78 ki te -6.
x=4 x=13
Kua oti te whārite te whakatau.
-3x^{2}+51x-156=0
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
-3x^{2}+51x-156-\left(-156\right)=-\left(-156\right)
Me tāpiri 156 ki ngā taha e rua o te whārite.
-3x^{2}+51x=-\left(-156\right)
Mā te tango i te -156 i a ia ake anō ka toe ko te 0.
-3x^{2}+51x=156
Tango -156 mai i 0.
\frac{-3x^{2}+51x}{-3}=\frac{156}{-3}
Whakawehea ngā taha e rua ki te -3.
x^{2}+\frac{51}{-3}x=\frac{156}{-3}
Mā te whakawehe ki te -3 ka wetekia te whakareanga ki te -3.
x^{2}-17x=\frac{156}{-3}
Whakawehe 51 ki te -3.
x^{2}-17x=-52
Whakawehe 156 ki te -3.
x^{2}-17x+\left(-\frac{17}{2}\right)^{2}=-52+\left(-\frac{17}{2}\right)^{2}
Whakawehea te -17, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -\frac{17}{2}. Nā, tāpiria te pūrua o te -\frac{17}{2} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}-17x+\frac{289}{4}=-52+\frac{289}{4}
Pūruatia -\frac{17}{2} mā te pūrua i te taurunga me te tauraro o te hautanga.
x^{2}-17x+\frac{289}{4}=\frac{81}{4}
Tāpiri -52 ki te \frac{289}{4}.
\left(x-\frac{17}{2}\right)^{2}=\frac{81}{4}
Tauwehea x^{2}-17x+\frac{289}{4}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{17}{2}\right)^{2}}=\sqrt{\frac{81}{4}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x-\frac{17}{2}=\frac{9}{2} x-\frac{17}{2}=-\frac{9}{2}
Whakarūnātia.
x=13 x=4
Me tāpiri \frac{17}{2} ki ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}