Whakaoti mō x
x = \frac{\sqrt{13} + 5}{6} \approx 1.434258546
x=\frac{5-\sqrt{13}}{6}\approx 0.232408121
Graph
Tohaina
Kua tāruatia ki te papatopenga
-3x^{2}+5x-1=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-5±\sqrt{5^{2}-4\left(-3\right)\left(-1\right)}}{2\left(-3\right)}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi -3 mō a, 5 mō b, me -1 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-5±\sqrt{25-4\left(-3\right)\left(-1\right)}}{2\left(-3\right)}
Pūrua 5.
x=\frac{-5±\sqrt{25+12\left(-1\right)}}{2\left(-3\right)}
Whakareatia -4 ki te -3.
x=\frac{-5±\sqrt{25-12}}{2\left(-3\right)}
Whakareatia 12 ki te -1.
x=\frac{-5±\sqrt{13}}{2\left(-3\right)}
Tāpiri 25 ki te -12.
x=\frac{-5±\sqrt{13}}{-6}
Whakareatia 2 ki te -3.
x=\frac{\sqrt{13}-5}{-6}
Nā, me whakaoti te whārite x=\frac{-5±\sqrt{13}}{-6} ina he tāpiri te ±. Tāpiri -5 ki te \sqrt{13}.
x=\frac{5-\sqrt{13}}{6}
Whakawehe -5+\sqrt{13} ki te -6.
x=\frac{-\sqrt{13}-5}{-6}
Nā, me whakaoti te whārite x=\frac{-5±\sqrt{13}}{-6} ina he tango te ±. Tango \sqrt{13} mai i -5.
x=\frac{\sqrt{13}+5}{6}
Whakawehe -5-\sqrt{13} ki te -6.
x=\frac{5-\sqrt{13}}{6} x=\frac{\sqrt{13}+5}{6}
Kua oti te whārite te whakatau.
-3x^{2}+5x-1=0
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
-3x^{2}+5x-1-\left(-1\right)=-\left(-1\right)
Me tāpiri 1 ki ngā taha e rua o te whārite.
-3x^{2}+5x=-\left(-1\right)
Mā te tango i te -1 i a ia ake anō ka toe ko te 0.
-3x^{2}+5x=1
Tango -1 mai i 0.
\frac{-3x^{2}+5x}{-3}=\frac{1}{-3}
Whakawehea ngā taha e rua ki te -3.
x^{2}+\frac{5}{-3}x=\frac{1}{-3}
Mā te whakawehe ki te -3 ka wetekia te whakareanga ki te -3.
x^{2}-\frac{5}{3}x=\frac{1}{-3}
Whakawehe 5 ki te -3.
x^{2}-\frac{5}{3}x=-\frac{1}{3}
Whakawehe 1 ki te -3.
x^{2}-\frac{5}{3}x+\left(-\frac{5}{6}\right)^{2}=-\frac{1}{3}+\left(-\frac{5}{6}\right)^{2}
Whakawehea te -\frac{5}{3}, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -\frac{5}{6}. Nā, tāpiria te pūrua o te -\frac{5}{6} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}-\frac{5}{3}x+\frac{25}{36}=-\frac{1}{3}+\frac{25}{36}
Pūruatia -\frac{5}{6} mā te pūrua i te taurunga me te tauraro o te hautanga.
x^{2}-\frac{5}{3}x+\frac{25}{36}=\frac{13}{36}
Tāpiri -\frac{1}{3} ki te \frac{25}{36} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
\left(x-\frac{5}{6}\right)^{2}=\frac{13}{36}
Tauwehea x^{2}-\frac{5}{3}x+\frac{25}{36}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{5}{6}\right)^{2}}=\sqrt{\frac{13}{36}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x-\frac{5}{6}=\frac{\sqrt{13}}{6} x-\frac{5}{6}=-\frac{\sqrt{13}}{6}
Whakarūnātia.
x=\frac{\sqrt{13}+5}{6} x=\frac{5-\sqrt{13}}{6}
Me tāpiri \frac{5}{6} ki ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}