Tīpoka ki ngā ihirangi matua
Tauwehe
Tick mark Image
Aromātai
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

a+b=5 ab=-3\times 2=-6
Whakatauwehea te kīanga mā te whakarōpū. Tuatahi, me tuhi anō te kīanga hei -3x^{2}+ax+bx+2. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
-1,6 -2,3
I te mea kua tōraro te ab, he tauaro ngā tohu o a me b. I te mea kua tōrunga te a+b, he nui ake te uara pū o te tau tōrunga i tō te tōraro. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua -6.
-1+6=5 -2+3=1
Tātaihia te tapeke mō ia takirua.
a=6 b=-1
Ko te otinga te takirua ka hoatu i te tapeke 5.
\left(-3x^{2}+6x\right)+\left(-x+2\right)
Tuhia anō te -3x^{2}+5x+2 hei \left(-3x^{2}+6x\right)+\left(-x+2\right).
3x\left(-x+2\right)-x+2
Whakatauwehea atu 3x i te -3x^{2}+6x.
\left(-x+2\right)\left(3x+1\right)
Whakatauwehea atu te kīanga pātahi -x+2 mā te whakamahi i te āhuatanga tātai tohatoha.
-3x^{2}+5x+2=0
Ka taea te huamaha pūrua te tauwehe mā te whakamahi i te huringa ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), ina ko x_{1} me x_{2} ngā otinga o te whārite pūrua ax^{2}+bx+c=0.
x=\frac{-5±\sqrt{5^{2}-4\left(-3\right)\times 2}}{2\left(-3\right)}
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-5±\sqrt{25-4\left(-3\right)\times 2}}{2\left(-3\right)}
Pūrua 5.
x=\frac{-5±\sqrt{25+12\times 2}}{2\left(-3\right)}
Whakareatia -4 ki te -3.
x=\frac{-5±\sqrt{25+24}}{2\left(-3\right)}
Whakareatia 12 ki te 2.
x=\frac{-5±\sqrt{49}}{2\left(-3\right)}
Tāpiri 25 ki te 24.
x=\frac{-5±7}{2\left(-3\right)}
Tuhia te pūtakerua o te 49.
x=\frac{-5±7}{-6}
Whakareatia 2 ki te -3.
x=\frac{2}{-6}
Nā, me whakaoti te whārite x=\frac{-5±7}{-6} ina he tāpiri te ±. Tāpiri -5 ki te 7.
x=-\frac{1}{3}
Whakahekea te hautanga \frac{2}{-6} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
x=-\frac{12}{-6}
Nā, me whakaoti te whārite x=\frac{-5±7}{-6} ina he tango te ±. Tango 7 mai i -5.
x=2
Whakawehe -12 ki te -6.
-3x^{2}+5x+2=-3\left(x-\left(-\frac{1}{3}\right)\right)\left(x-2\right)
Tauwehea te kīanga taketake mā te whakamahi i te ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Me whakakapi te -\frac{1}{3} mō te x_{1} me te 2 mō te x_{2}.
-3x^{2}+5x+2=-3\left(x+\frac{1}{3}\right)\left(x-2\right)
Whakamāmātia ngā kīanga katoa o te āhua p-\left(-q\right) ki te p+q.
-3x^{2}+5x+2=-3\times \frac{-3x-1}{-3}\left(x-2\right)
Tāpiri \frac{1}{3} ki te x mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
-3x^{2}+5x+2=\left(-3x-1\right)\left(x-2\right)
Whakakorea atu te tauwehe pūnoa nui rawa 3 i roto i te -3 me te 3.