Whakaoti mō x
x = \frac{4}{3} = 1\frac{1}{3} \approx 1.333333333
x=0
Graph
Tohaina
Kua tāruatia ki te papatopenga
x\left(-3x+4\right)=0
Tauwehea te x.
x=0 x=\frac{4}{3}
Hei kimi otinga whārite, me whakaoti te x=0 me te -3x+4=0.
-3x^{2}+4x=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-4±\sqrt{4^{2}}}{2\left(-3\right)}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi -3 mō a, 4 mō b, me 0 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-4±4}{2\left(-3\right)}
Tuhia te pūtakerua o te 4^{2}.
x=\frac{-4±4}{-6}
Whakareatia 2 ki te -3.
x=\frac{0}{-6}
Nā, me whakaoti te whārite x=\frac{-4±4}{-6} ina he tāpiri te ±. Tāpiri -4 ki te 4.
x=0
Whakawehe 0 ki te -6.
x=-\frac{8}{-6}
Nā, me whakaoti te whārite x=\frac{-4±4}{-6} ina he tango te ±. Tango 4 mai i -4.
x=\frac{4}{3}
Whakahekea te hautanga \frac{-8}{-6} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
x=0 x=\frac{4}{3}
Kua oti te whārite te whakatau.
-3x^{2}+4x=0
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
\frac{-3x^{2}+4x}{-3}=\frac{0}{-3}
Whakawehea ngā taha e rua ki te -3.
x^{2}+\frac{4}{-3}x=\frac{0}{-3}
Mā te whakawehe ki te -3 ka wetekia te whakareanga ki te -3.
x^{2}-\frac{4}{3}x=\frac{0}{-3}
Whakawehe 4 ki te -3.
x^{2}-\frac{4}{3}x=0
Whakawehe 0 ki te -3.
x^{2}-\frac{4}{3}x+\left(-\frac{2}{3}\right)^{2}=\left(-\frac{2}{3}\right)^{2}
Whakawehea te -\frac{4}{3}, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -\frac{2}{3}. Nā, tāpiria te pūrua o te -\frac{2}{3} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}-\frac{4}{3}x+\frac{4}{9}=\frac{4}{9}
Pūruatia -\frac{2}{3} mā te pūrua i te taurunga me te tauraro o te hautanga.
\left(x-\frac{2}{3}\right)^{2}=\frac{4}{9}
Tauwehea x^{2}-\frac{4}{3}x+\frac{4}{9}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{2}{3}\right)^{2}}=\sqrt{\frac{4}{9}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x-\frac{2}{3}=\frac{2}{3} x-\frac{2}{3}=-\frac{2}{3}
Whakarūnātia.
x=\frac{4}{3} x=0
Me tāpiri \frac{2}{3} ki ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}