Tīpoka ki ngā ihirangi matua
Whakaoti mō x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

-3x^{2}=13-21
Tangohia te 21 mai i ngā taha e rua.
-3x^{2}=-8
Tangohia te 21 i te 13, ka -8.
x^{2}=\frac{-8}{-3}
Whakawehea ngā taha e rua ki te -3.
x^{2}=\frac{8}{3}
Ka taea te hautanga \frac{-8}{-3} te whakamāmā ki te \frac{8}{3} mā te tango tahi i te tohu tōraro i te taurunga me te tauraro.
x=\frac{2\sqrt{6}}{3} x=-\frac{2\sqrt{6}}{3}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
-3x^{2}+21-13=0
Tangohia te 13 mai i ngā taha e rua.
-3x^{2}+8=0
Tangohia te 13 i te 21, ka 8.
x=\frac{0±\sqrt{0^{2}-4\left(-3\right)\times 8}}{2\left(-3\right)}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi -3 mō a, 0 mō b, me 8 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\left(-3\right)\times 8}}{2\left(-3\right)}
Pūrua 0.
x=\frac{0±\sqrt{12\times 8}}{2\left(-3\right)}
Whakareatia -4 ki te -3.
x=\frac{0±\sqrt{96}}{2\left(-3\right)}
Whakareatia 12 ki te 8.
x=\frac{0±4\sqrt{6}}{2\left(-3\right)}
Tuhia te pūtakerua o te 96.
x=\frac{0±4\sqrt{6}}{-6}
Whakareatia 2 ki te -3.
x=-\frac{2\sqrt{6}}{3}
Nā, me whakaoti te whārite x=\frac{0±4\sqrt{6}}{-6} ina he tāpiri te ±.
x=\frac{2\sqrt{6}}{3}
Nā, me whakaoti te whārite x=\frac{0±4\sqrt{6}}{-6} ina he tango te ±.
x=-\frac{2\sqrt{6}}{3} x=\frac{2\sqrt{6}}{3}
Kua oti te whārite te whakatau.