Whakaoti mō x
x = \frac{2 \sqrt{6}}{3} \approx 1.632993162
x = -\frac{2 \sqrt{6}}{3} \approx -1.632993162
Graph
Tohaina
Kua tāruatia ki te papatopenga
-3x^{2}=13-21
Tangohia te 21 mai i ngā taha e rua.
-3x^{2}=-8
Tangohia te 21 i te 13, ka -8.
x^{2}=\frac{-8}{-3}
Whakawehea ngā taha e rua ki te -3.
x^{2}=\frac{8}{3}
Ka taea te hautanga \frac{-8}{-3} te whakamāmā ki te \frac{8}{3} mā te tango tahi i te tohu tōraro i te taurunga me te tauraro.
x=\frac{2\sqrt{6}}{3} x=-\frac{2\sqrt{6}}{3}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
-3x^{2}+21-13=0
Tangohia te 13 mai i ngā taha e rua.
-3x^{2}+8=0
Tangohia te 13 i te 21, ka 8.
x=\frac{0±\sqrt{0^{2}-4\left(-3\right)\times 8}}{2\left(-3\right)}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi -3 mō a, 0 mō b, me 8 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\left(-3\right)\times 8}}{2\left(-3\right)}
Pūrua 0.
x=\frac{0±\sqrt{12\times 8}}{2\left(-3\right)}
Whakareatia -4 ki te -3.
x=\frac{0±\sqrt{96}}{2\left(-3\right)}
Whakareatia 12 ki te 8.
x=\frac{0±4\sqrt{6}}{2\left(-3\right)}
Tuhia te pūtakerua o te 96.
x=\frac{0±4\sqrt{6}}{-6}
Whakareatia 2 ki te -3.
x=-\frac{2\sqrt{6}}{3}
Nā, me whakaoti te whārite x=\frac{0±4\sqrt{6}}{-6} ina he tāpiri te ±.
x=\frac{2\sqrt{6}}{3}
Nā, me whakaoti te whārite x=\frac{0±4\sqrt{6}}{-6} ina he tango te ±.
x=-\frac{2\sqrt{6}}{3} x=\frac{2\sqrt{6}}{3}
Kua oti te whārite te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}