Tauwehe
3\left(3-u\right)\left(u+15\right)
Aromātai
3\left(3-u\right)\left(u+15\right)
Tohaina
Kua tāruatia ki te papatopenga
3\left(-u^{2}-12u+45\right)
Tauwehea te 3.
a+b=-12 ab=-45=-45
Whakaarohia te -u^{2}-12u+45. Whakatauwehea te kīanga mā te whakarōpū. Tuatahi, me tuhi anō te kīanga hei -u^{2}+au+bu+45. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
1,-45 3,-15 5,-9
I te mea kua tōraro te ab, he tauaro ngā tohu o a me b. I te mea kua tōraro te a+b, he nui ake te uara pū o te tau tōraro i tō te tōrunga. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua -45.
1-45=-44 3-15=-12 5-9=-4
Tātaihia te tapeke mō ia takirua.
a=3 b=-15
Ko te otinga te takirua ka hoatu i te tapeke -12.
\left(-u^{2}+3u\right)+\left(-15u+45\right)
Tuhia anō te -u^{2}-12u+45 hei \left(-u^{2}+3u\right)+\left(-15u+45\right).
u\left(-u+3\right)+15\left(-u+3\right)
Tauwehea te u i te tuatahi me te 15 i te rōpū tuarua.
\left(-u+3\right)\left(u+15\right)
Whakatauwehea atu te kīanga pātahi -u+3 mā te whakamahi i te āhuatanga tātai tohatoha.
3\left(-u+3\right)\left(u+15\right)
Me tuhi anō te kīanga whakatauwehe katoa.
-3u^{2}-36u+135=0
Ka taea te huamaha pūrua te tauwehe mā te whakamahi i te huringa ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), ina ko x_{1} me x_{2} ngā otinga o te whārite pūrua ax^{2}+bx+c=0.
u=\frac{-\left(-36\right)±\sqrt{\left(-36\right)^{2}-4\left(-3\right)\times 135}}{2\left(-3\right)}
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
u=\frac{-\left(-36\right)±\sqrt{1296-4\left(-3\right)\times 135}}{2\left(-3\right)}
Pūrua -36.
u=\frac{-\left(-36\right)±\sqrt{1296+12\times 135}}{2\left(-3\right)}
Whakareatia -4 ki te -3.
u=\frac{-\left(-36\right)±\sqrt{1296+1620}}{2\left(-3\right)}
Whakareatia 12 ki te 135.
u=\frac{-\left(-36\right)±\sqrt{2916}}{2\left(-3\right)}
Tāpiri 1296 ki te 1620.
u=\frac{-\left(-36\right)±54}{2\left(-3\right)}
Tuhia te pūtakerua o te 2916.
u=\frac{36±54}{2\left(-3\right)}
Ko te tauaro o -36 ko 36.
u=\frac{36±54}{-6}
Whakareatia 2 ki te -3.
u=\frac{90}{-6}
Nā, me whakaoti te whārite u=\frac{36±54}{-6} ina he tāpiri te ±. Tāpiri 36 ki te 54.
u=-15
Whakawehe 90 ki te -6.
u=-\frac{18}{-6}
Nā, me whakaoti te whārite u=\frac{36±54}{-6} ina he tango te ±. Tango 54 mai i 36.
u=3
Whakawehe -18 ki te -6.
-3u^{2}-36u+135=-3\left(u-\left(-15\right)\right)\left(u-3\right)
Tauwehea te kīanga taketake mā te whakamahi i te ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Me whakakapi te -15 mō te x_{1} me te 3 mō te x_{2}.
-3u^{2}-36u+135=-3\left(u+15\right)\left(u-3\right)
Whakamāmātia ngā kīanga katoa o te āhua p-\left(-q\right) ki te p+q.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}