Whakaoti mō r
r=\sqrt{194}+15\approx 28.928388277
r=15-\sqrt{194}\approx 1.071611723
Tohaina
Kua tāruatia ki te papatopenga
-3r^{2}+90r=93
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
-3r^{2}+90r-93=93-93
Me tango 93 mai i ngā taha e rua o te whārite.
-3r^{2}+90r-93=0
Mā te tango i te 93 i a ia ake anō ka toe ko te 0.
r=\frac{-90±\sqrt{90^{2}-4\left(-3\right)\left(-93\right)}}{2\left(-3\right)}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi -3 mō a, 90 mō b, me -93 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
r=\frac{-90±\sqrt{8100-4\left(-3\right)\left(-93\right)}}{2\left(-3\right)}
Pūrua 90.
r=\frac{-90±\sqrt{8100+12\left(-93\right)}}{2\left(-3\right)}
Whakareatia -4 ki te -3.
r=\frac{-90±\sqrt{8100-1116}}{2\left(-3\right)}
Whakareatia 12 ki te -93.
r=\frac{-90±\sqrt{6984}}{2\left(-3\right)}
Tāpiri 8100 ki te -1116.
r=\frac{-90±6\sqrt{194}}{2\left(-3\right)}
Tuhia te pūtakerua o te 6984.
r=\frac{-90±6\sqrt{194}}{-6}
Whakareatia 2 ki te -3.
r=\frac{6\sqrt{194}-90}{-6}
Nā, me whakaoti te whārite r=\frac{-90±6\sqrt{194}}{-6} ina he tāpiri te ±. Tāpiri -90 ki te 6\sqrt{194}.
r=15-\sqrt{194}
Whakawehe -90+6\sqrt{194} ki te -6.
r=\frac{-6\sqrt{194}-90}{-6}
Nā, me whakaoti te whārite r=\frac{-90±6\sqrt{194}}{-6} ina he tango te ±. Tango 6\sqrt{194} mai i -90.
r=\sqrt{194}+15
Whakawehe -90-6\sqrt{194} ki te -6.
r=15-\sqrt{194} r=\sqrt{194}+15
Kua oti te whārite te whakatau.
-3r^{2}+90r=93
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
\frac{-3r^{2}+90r}{-3}=\frac{93}{-3}
Whakawehea ngā taha e rua ki te -3.
r^{2}+\frac{90}{-3}r=\frac{93}{-3}
Mā te whakawehe ki te -3 ka wetekia te whakareanga ki te -3.
r^{2}-30r=\frac{93}{-3}
Whakawehe 90 ki te -3.
r^{2}-30r=-31
Whakawehe 93 ki te -3.
r^{2}-30r+\left(-15\right)^{2}=-31+\left(-15\right)^{2}
Whakawehea te -30, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -15. Nā, tāpiria te pūrua o te -15 ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
r^{2}-30r+225=-31+225
Pūrua -15.
r^{2}-30r+225=194
Tāpiri -31 ki te 225.
\left(r-15\right)^{2}=194
Tauwehea r^{2}-30r+225. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(r-15\right)^{2}}=\sqrt{194}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
r-15=\sqrt{194} r-15=-\sqrt{194}
Whakarūnātia.
r=\sqrt{194}+15 r=15-\sqrt{194}
Me tāpiri 15 ki ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}