Whakaoti mō k
k=2\sqrt{7}-3\approx 2.291502622
k=-2\sqrt{7}-3\approx -8.291502622
Tohaina
Kua tāruatia ki te papatopenga
-3k^{2}-18k+57=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
k=\frac{-\left(-18\right)±\sqrt{\left(-18\right)^{2}-4\left(-3\right)\times 57}}{2\left(-3\right)}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi -3 mō a, -18 mō b, me 57 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
k=\frac{-\left(-18\right)±\sqrt{324-4\left(-3\right)\times 57}}{2\left(-3\right)}
Pūrua -18.
k=\frac{-\left(-18\right)±\sqrt{324+12\times 57}}{2\left(-3\right)}
Whakareatia -4 ki te -3.
k=\frac{-\left(-18\right)±\sqrt{324+684}}{2\left(-3\right)}
Whakareatia 12 ki te 57.
k=\frac{-\left(-18\right)±\sqrt{1008}}{2\left(-3\right)}
Tāpiri 324 ki te 684.
k=\frac{-\left(-18\right)±12\sqrt{7}}{2\left(-3\right)}
Tuhia te pūtakerua o te 1008.
k=\frac{18±12\sqrt{7}}{2\left(-3\right)}
Ko te tauaro o -18 ko 18.
k=\frac{18±12\sqrt{7}}{-6}
Whakareatia 2 ki te -3.
k=\frac{12\sqrt{7}+18}{-6}
Nā, me whakaoti te whārite k=\frac{18±12\sqrt{7}}{-6} ina he tāpiri te ±. Tāpiri 18 ki te 12\sqrt{7}.
k=-2\sqrt{7}-3
Whakawehe 18+12\sqrt{7} ki te -6.
k=\frac{18-12\sqrt{7}}{-6}
Nā, me whakaoti te whārite k=\frac{18±12\sqrt{7}}{-6} ina he tango te ±. Tango 12\sqrt{7} mai i 18.
k=2\sqrt{7}-3
Whakawehe 18-12\sqrt{7} ki te -6.
k=-2\sqrt{7}-3 k=2\sqrt{7}-3
Kua oti te whārite te whakatau.
-3k^{2}-18k+57=0
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
-3k^{2}-18k+57-57=-57
Me tango 57 mai i ngā taha e rua o te whārite.
-3k^{2}-18k=-57
Mā te tango i te 57 i a ia ake anō ka toe ko te 0.
\frac{-3k^{2}-18k}{-3}=-\frac{57}{-3}
Whakawehea ngā taha e rua ki te -3.
k^{2}+\left(-\frac{18}{-3}\right)k=-\frac{57}{-3}
Mā te whakawehe ki te -3 ka wetekia te whakareanga ki te -3.
k^{2}+6k=-\frac{57}{-3}
Whakawehe -18 ki te -3.
k^{2}+6k=19
Whakawehe -57 ki te -3.
k^{2}+6k+3^{2}=19+3^{2}
Whakawehea te 6, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te 3. Nā, tāpiria te pūrua o te 3 ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
k^{2}+6k+9=19+9
Pūrua 3.
k^{2}+6k+9=28
Tāpiri 19 ki te 9.
\left(k+3\right)^{2}=28
Tauwehea k^{2}+6k+9. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(k+3\right)^{2}}=\sqrt{28}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
k+3=2\sqrt{7} k+3=-2\sqrt{7}
Whakarūnātia.
k=2\sqrt{7}-3 k=-2\sqrt{7}-3
Me tango 3 mai i ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}