Whakaoti mō x (complex solution)
x\in \mathrm{C}
Whakaoti mō x
x\in \mathrm{R}
Graph
Tohaina
Kua tāruatia ki te papatopenga
-3x-6=-x-2x-8+2
Whakamahia te āhuatanga tohatoha hei whakarea te -3 ki te x+2.
-3x-6=-x-2x-6
Tāpirihia te -8 ki te 2, ka -6.
-3x-6+x=-2x-6
Me tāpiri te x ki ngā taha e rua.
-2x-6=-2x-6
Pahekotia te -3x me x, ka -2x.
-2x-6+2x=-6
Me tāpiri te 2x ki ngā taha e rua.
-6=-6
Pahekotia te -2x me 2x, ka 0.
\text{true}
Whakatauritea te -6 me te -6.
x\in \mathrm{C}
He pono tēnei mō tētahi x ahakoa.
-3x-6=-x-2x-8+2
Whakamahia te āhuatanga tohatoha hei whakarea te -3 ki te x+2.
-3x-6=-x-2x-6
Tāpirihia te -8 ki te 2, ka -6.
-3x-6+x=-2x-6
Me tāpiri te x ki ngā taha e rua.
-2x-6=-2x-6
Pahekotia te -3x me x, ka -2x.
-2x-6+2x=-6
Me tāpiri te 2x ki ngā taha e rua.
-6=-6
Pahekotia te -2x me 2x, ka 0.
\text{true}
Whakatauritea te -6 me te -6.
x\in \mathrm{R}
He pono tēnei mō tētahi x ahakoa.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}