Whakaoti mō r
r=-2
Tohaina
Kua tāruatia ki te papatopenga
-3r-15=3\left(r-1\right)
Whakamahia te āhuatanga tohatoha hei whakarea te -3 ki te r+5.
-3r-15=3r-3
Whakamahia te āhuatanga tohatoha hei whakarea te 3 ki te r-1.
-3r-15-3r=-3
Tangohia te 3r mai i ngā taha e rua.
-6r-15=-3
Pahekotia te -3r me -3r, ka -6r.
-6r=-3+15
Me tāpiri te 15 ki ngā taha e rua.
-6r=12
Tāpirihia te -3 ki te 15, ka 12.
r=\frac{12}{-6}
Whakawehea ngā taha e rua ki te -6.
r=-2
Whakawehea te 12 ki te -6, kia riro ko -2.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}