Tīpoka ki ngā ihirangi matua
Whakaoti mō x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

-6x+3+\left(x+1\right)\left(x-1\right)-5\left(x+2\right)=1
Whakamahia te āhuatanga tohatoha hei whakarea te -3 ki te 2x-1.
-6x+3+x^{2}-1-5\left(x+2\right)=1
Whakaarohia te \left(x+1\right)\left(x-1\right). Ka taea te whakareanga te panoni ki te rerekētanga o ngā pūrua mā te ture: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Pūrua 1.
-6x+2+x^{2}-5\left(x+2\right)=1
Tangohia te 1 i te 3, ka 2.
-6x+2+x^{2}-5x-10=1
Whakamahia te āhuatanga tohatoha hei whakarea te -5 ki te x+2.
-11x+2+x^{2}-10=1
Pahekotia te -6x me -5x, ka -11x.
-11x-8+x^{2}=1
Tangohia te 10 i te 2, ka -8.
-11x-8+x^{2}-1=0
Tangohia te 1 mai i ngā taha e rua.
-11x-9+x^{2}=0
Tangohia te 1 i te -8, ka -9.
x^{2}-11x-9=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-\left(-11\right)±\sqrt{\left(-11\right)^{2}-4\left(-9\right)}}{2}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 1 mō a, -11 mō b, me -9 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-11\right)±\sqrt{121-4\left(-9\right)}}{2}
Pūrua -11.
x=\frac{-\left(-11\right)±\sqrt{121+36}}{2}
Whakareatia -4 ki te -9.
x=\frac{-\left(-11\right)±\sqrt{157}}{2}
Tāpiri 121 ki te 36.
x=\frac{11±\sqrt{157}}{2}
Ko te tauaro o -11 ko 11.
x=\frac{\sqrt{157}+11}{2}
Nā, me whakaoti te whārite x=\frac{11±\sqrt{157}}{2} ina he tāpiri te ±. Tāpiri 11 ki te \sqrt{157}.
x=\frac{11-\sqrt{157}}{2}
Nā, me whakaoti te whārite x=\frac{11±\sqrt{157}}{2} ina he tango te ±. Tango \sqrt{157} mai i 11.
x=\frac{\sqrt{157}+11}{2} x=\frac{11-\sqrt{157}}{2}
Kua oti te whārite te whakatau.
-6x+3+\left(x+1\right)\left(x-1\right)-5\left(x+2\right)=1
Whakamahia te āhuatanga tohatoha hei whakarea te -3 ki te 2x-1.
-6x+3+x^{2}-1-5\left(x+2\right)=1
Whakaarohia te \left(x+1\right)\left(x-1\right). Ka taea te whakareanga te panoni ki te rerekētanga o ngā pūrua mā te ture: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Pūrua 1.
-6x+2+x^{2}-5\left(x+2\right)=1
Tangohia te 1 i te 3, ka 2.
-6x+2+x^{2}-5x-10=1
Whakamahia te āhuatanga tohatoha hei whakarea te -5 ki te x+2.
-11x+2+x^{2}-10=1
Pahekotia te -6x me -5x, ka -11x.
-11x-8+x^{2}=1
Tangohia te 10 i te 2, ka -8.
-11x+x^{2}=1+8
Me tāpiri te 8 ki ngā taha e rua.
-11x+x^{2}=9
Tāpirihia te 1 ki te 8, ka 9.
x^{2}-11x=9
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
x^{2}-11x+\left(-\frac{11}{2}\right)^{2}=9+\left(-\frac{11}{2}\right)^{2}
Whakawehea te -11, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -\frac{11}{2}. Nā, tāpiria te pūrua o te -\frac{11}{2} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}-11x+\frac{121}{4}=9+\frac{121}{4}
Pūruatia -\frac{11}{2} mā te pūrua i te taurunga me te tauraro o te hautanga.
x^{2}-11x+\frac{121}{4}=\frac{157}{4}
Tāpiri 9 ki te \frac{121}{4}.
\left(x-\frac{11}{2}\right)^{2}=\frac{157}{4}
Tauwehea x^{2}-11x+\frac{121}{4}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{11}{2}\right)^{2}}=\sqrt{\frac{157}{4}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x-\frac{11}{2}=\frac{\sqrt{157}}{2} x-\frac{11}{2}=-\frac{\sqrt{157}}{2}
Whakarūnātia.
x=\frac{\sqrt{157}+11}{2} x=\frac{11-\sqrt{157}}{2}
Me tāpiri \frac{11}{2} ki ngā taha e rua o te whārite.