Aromātai
x^{2}-11x-8
Whakaroha
x^{2}-11x-8
Graph
Tohaina
Kua tāruatia ki te papatopenga
-6x+3+\left(x+1\right)\left(x-1\right)-5\left(x+2\right)
Whakamahia te āhuatanga tohatoha hei whakarea te -3 ki te 2x-1.
-6x+3+x^{2}-1^{2}-5\left(x+2\right)
Whakaarohia te \left(x+1\right)\left(x-1\right). Ka taea te whakareanga te panoni ki te rerekētanga o ngā pūrua mā te ture: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
-6x+3+x^{2}-1-5\left(x+2\right)
Tātaihia te 1 mā te pū o 2, kia riro ko 1.
-6x+2+x^{2}-5\left(x+2\right)
Tangohia te 1 i te 3, ka 2.
-6x+2+x^{2}-5x-10
Whakamahia te āhuatanga tohatoha hei whakarea te -5 ki te x+2.
-11x+2+x^{2}-10
Pahekotia te -6x me -5x, ka -11x.
-11x-8+x^{2}
Tangohia te 10 i te 2, ka -8.
-6x+3+\left(x+1\right)\left(x-1\right)-5\left(x+2\right)
Whakamahia te āhuatanga tohatoha hei whakarea te -3 ki te 2x-1.
-6x+3+x^{2}-1^{2}-5\left(x+2\right)
Whakaarohia te \left(x+1\right)\left(x-1\right). Ka taea te whakareanga te panoni ki te rerekētanga o ngā pūrua mā te ture: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
-6x+3+x^{2}-1-5\left(x+2\right)
Tātaihia te 1 mā te pū o 2, kia riro ko 1.
-6x+2+x^{2}-5\left(x+2\right)
Tangohia te 1 i te 3, ka 2.
-6x+2+x^{2}-5x-10
Whakamahia te āhuatanga tohatoha hei whakarea te -5 ki te x+2.
-11x+2+x^{2}-10
Pahekotia te -6x me -5x, ka -11x.
-11x-8+x^{2}
Tangohia te 10 i te 2, ka -8.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}