Aromātai
-2\left(y+1\right)\left(y+6\right)
Whakaroha
-2y^{2}-14y-12
Graph
Tohaina
Kua tāruatia ki te papatopenga
-3\left(4+4y+y^{2}\right)+y\left(y-2\right)
Whakamahia te ture huarua \left(a+b\right)^{2}=a^{2}+2ab+b^{2} hei whakaroha \left(2+y\right)^{2}.
-12-12y-3y^{2}+y\left(y-2\right)
Whakamahia te āhuatanga tohatoha hei whakarea te -3 ki te 4+4y+y^{2}.
-12-12y-3y^{2}+y^{2}-2y
Whakamahia te āhuatanga tohatoha hei whakarea te y ki te y-2.
-12-12y-2y^{2}-2y
Pahekotia te -3y^{2} me y^{2}, ka -2y^{2}.
-12-14y-2y^{2}
Pahekotia te -12y me -2y, ka -14y.
-3\left(4+4y+y^{2}\right)+y\left(y-2\right)
Whakamahia te ture huarua \left(a+b\right)^{2}=a^{2}+2ab+b^{2} hei whakaroha \left(2+y\right)^{2}.
-12-12y-3y^{2}+y\left(y-2\right)
Whakamahia te āhuatanga tohatoha hei whakarea te -3 ki te 4+4y+y^{2}.
-12-12y-3y^{2}+y^{2}-2y
Whakamahia te āhuatanga tohatoha hei whakarea te y ki te y-2.
-12-12y-2y^{2}-2y
Pahekotia te -3y^{2} me y^{2}, ka -2y^{2}.
-12-14y-2y^{2}
Pahekotia te -12y me -2y, ka -14y.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}