Aromātai
\frac{7257}{64}=113.390625
Tauwehe
\frac{3 \cdot 41 \cdot 59}{2 ^ {6}} = 113\frac{25}{64} = 113.390625
Tohaina
Kua tāruatia ki te papatopenga
-27\left(-5\right)+\frac{16}{\left(-2\right)^{3}}-|-4\times 5|+\left(\frac{5}{8}-0\times 625\right)^{2}
Tātaihia te 3 mā te pū o 3, kia riro ko 27.
135+\frac{16}{\left(-2\right)^{3}}-|-4\times 5|+\left(\frac{5}{8}-0\times 625\right)^{2}
Whakareatia te -27 ki te -5, ka 135.
135+\frac{16}{-8}-|-4\times 5|+\left(\frac{5}{8}-0\times 625\right)^{2}
Tātaihia te -2 mā te pū o 3, kia riro ko -8.
135-2-|-4\times 5|+\left(\frac{5}{8}-0\times 625\right)^{2}
Whakawehea te 16 ki te -8, kia riro ko -2.
133-|-4\times 5|+\left(\frac{5}{8}-0\times 625\right)^{2}
Tangohia te 2 i te 135, ka 133.
133-|-20|+\left(\frac{5}{8}-0\times 625\right)^{2}
Whakareatia te -4 ki te 5, ka -20.
133-20+\left(\frac{5}{8}-0\times 625\right)^{2}
Ko te uara pū o tētahi tau tūturu a ko a ina a\geq 0, ko -a rānei ina a<0. Ko te uara pū o -20 ko 20.
113+\left(\frac{5}{8}-0\times 625\right)^{2}
Tangohia te 20 i te 133, ka 113.
113+\left(\frac{5}{8}-0\right)^{2}
Whakareatia te 0 ki te 625, ka 0.
113+\left(\frac{5}{8}\right)^{2}
Tangohia te 0 i te \frac{5}{8}, ka \frac{5}{8}.
113+\frac{25}{64}
Tātaihia te \frac{5}{8} mā te pū o 2, kia riro ko \frac{25}{64}.
\frac{7257}{64}
Tāpirihia te 113 ki te \frac{25}{64}, ka \frac{7257}{64}.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}