Aromātai
-\frac{25}{2}=-12.5
Tauwehe
-\frac{25}{2} = -12\frac{1}{2} = -12.5
Tohaina
Kua tāruatia ki te papatopenga
-9+\frac{50}{2^{2}}\left(-\frac{1}{5}\right)-1
Tātaihia te 3 mā te pū o 2, kia riro ko 9.
-9+\frac{50}{4}\left(-\frac{1}{5}\right)-1
Tātaihia te 2 mā te pū o 2, kia riro ko 4.
-9+\frac{25}{2}\left(-\frac{1}{5}\right)-1
Whakahekea te hautanga \frac{50}{4} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
-9+\frac{25\left(-1\right)}{2\times 5}-1
Me whakarea te \frac{25}{2} ki te -\frac{1}{5} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
-9+\frac{-25}{10}-1
Mahia ngā whakarea i roto i te hautanga \frac{25\left(-1\right)}{2\times 5}.
-9-\frac{5}{2}-1
Whakahekea te hautanga \frac{-25}{10} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 5.
-\frac{18}{2}-\frac{5}{2}-1
Me tahuri te -9 ki te hautau -\frac{18}{2}.
\frac{-18-5}{2}-1
Tā te mea he rite te tauraro o -\frac{18}{2} me \frac{5}{2}, me tango rāua mā te tango i ō raua taurunga.
-\frac{23}{2}-1
Tangohia te 5 i te -18, ka -23.
-\frac{23}{2}-\frac{2}{2}
Me tahuri te 1 ki te hautau \frac{2}{2}.
\frac{-23-2}{2}
Tā te mea he rite te tauraro o -\frac{23}{2} me \frac{2}{2}, me tango rāua mā te tango i ō raua taurunga.
-\frac{25}{2}
Tangohia te 2 i te -23, ka -25.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}