Tīpoka ki ngā ihirangi matua
Whakaoti mō x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

-3=x^{2}-4x+4-3
Whakamahia te ture huarua \left(a-b\right)^{2}=a^{2}-2ab+b^{2} hei whakaroha \left(x-2\right)^{2}.
-3=x^{2}-4x+1
Tangohia te 3 i te 4, ka 1.
x^{2}-4x+1=-3
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
x^{2}-4x+1+3=0
Me tāpiri te 3 ki ngā taha e rua.
x^{2}-4x+4=0
Tāpirihia te 1 ki te 3, ka 4.
a+b=-4 ab=4
Hei whakaoti i te whārite, whakatauwehea te x^{2}-4x+4 mā te whakamahi i te tātai x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right). Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
-1,-4 -2,-2
I te mea kua tōrunga te ab, he ōrite te tohu o a me b. I te mea kua tōraro te a+b, he tōraro hoki a a me b. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua 4.
-1-4=-5 -2-2=-4
Tātaihia te tapeke mō ia takirua.
a=-2 b=-2
Ko te otinga te takirua ka hoatu i te tapeke -4.
\left(x-2\right)\left(x-2\right)
Me tuhi anō te kīanga whakatauwehe \left(x+a\right)\left(x+b\right) mā ngā uara i tātaihia.
\left(x-2\right)^{2}
Tuhia anōtia hei pūrua huarua.
x=2
Hei kimi i te otinga whārite, whakaotia te x-2=0.
-3=x^{2}-4x+4-3
Whakamahia te ture huarua \left(a-b\right)^{2}=a^{2}-2ab+b^{2} hei whakaroha \left(x-2\right)^{2}.
-3=x^{2}-4x+1
Tangohia te 3 i te 4, ka 1.
x^{2}-4x+1=-3
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
x^{2}-4x+1+3=0
Me tāpiri te 3 ki ngā taha e rua.
x^{2}-4x+4=0
Tāpirihia te 1 ki te 3, ka 4.
a+b=-4 ab=1\times 4=4
Hei whakaoti i te whārite, whakatauwehea te taha mauī mā te whakarōpū. Tuatahi, me tuhi anō te taha mauī hei x^{2}+ax+bx+4. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
-1,-4 -2,-2
I te mea kua tōrunga te ab, he ōrite te tohu o a me b. I te mea kua tōraro te a+b, he tōraro hoki a a me b. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua 4.
-1-4=-5 -2-2=-4
Tātaihia te tapeke mō ia takirua.
a=-2 b=-2
Ko te otinga te takirua ka hoatu i te tapeke -4.
\left(x^{2}-2x\right)+\left(-2x+4\right)
Tuhia anō te x^{2}-4x+4 hei \left(x^{2}-2x\right)+\left(-2x+4\right).
x\left(x-2\right)-2\left(x-2\right)
Tauwehea te x i te tuatahi me te -2 i te rōpū tuarua.
\left(x-2\right)\left(x-2\right)
Whakatauwehea atu te kīanga pātahi x-2 mā te whakamahi i te āhuatanga tātai tohatoha.
\left(x-2\right)^{2}
Tuhia anōtia hei pūrua huarua.
x=2
Hei kimi i te otinga whārite, whakaotia te x-2=0.
-3=x^{2}-4x+4-3
Whakamahia te ture huarua \left(a-b\right)^{2}=a^{2}-2ab+b^{2} hei whakaroha \left(x-2\right)^{2}.
-3=x^{2}-4x+1
Tangohia te 3 i te 4, ka 1.
x^{2}-4x+1=-3
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
x^{2}-4x+1+3=0
Me tāpiri te 3 ki ngā taha e rua.
x^{2}-4x+4=0
Tāpirihia te 1 ki te 3, ka 4.
x=\frac{-\left(-4\right)±\sqrt{\left(-4\right)^{2}-4\times 4}}{2}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 1 mō a, -4 mō b, me 4 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-4\right)±\sqrt{16-4\times 4}}{2}
Pūrua -4.
x=\frac{-\left(-4\right)±\sqrt{16-16}}{2}
Whakareatia -4 ki te 4.
x=\frac{-\left(-4\right)±\sqrt{0}}{2}
Tāpiri 16 ki te -16.
x=-\frac{-4}{2}
Tuhia te pūtakerua o te 0.
x=\frac{4}{2}
Ko te tauaro o -4 ko 4.
x=2
Whakawehe 4 ki te 2.
-3=x^{2}-4x+4-3
Whakamahia te ture huarua \left(a-b\right)^{2}=a^{2}-2ab+b^{2} hei whakaroha \left(x-2\right)^{2}.
-3=x^{2}-4x+1
Tangohia te 3 i te 4, ka 1.
x^{2}-4x+1=-3
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
x^{2}-4x=-3-1
Tangohia te 1 mai i ngā taha e rua.
x^{2}-4x=-4
Tangohia te 1 i te -3, ka -4.
x^{2}-4x+\left(-2\right)^{2}=-4+\left(-2\right)^{2}
Whakawehea te -4, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -2. Nā, tāpiria te pūrua o te -2 ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}-4x+4=-4+4
Pūrua -2.
x^{2}-4x+4=0
Tāpiri -4 ki te 4.
\left(x-2\right)^{2}=0
Tauwehea x^{2}-4x+4. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-2\right)^{2}}=\sqrt{0}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x-2=0 x-2=0
Whakarūnātia.
x=2 x=2
Me tāpiri 2 ki ngā taha e rua o te whārite.
x=2
Kua oti te whārite te whakatau. He ōrite ngā whakatau.