Tauwehe
-9a\left(2a-3\right)\left(a+3\right)
Aromātai
-9a\left(2a-3\right)\left(a+3\right)
Tohaina
Kua tāruatia ki te papatopenga
9\left(-3a^{2}+9a-2a^{3}\right)
Tauwehea te 9.
a\left(-3a+9-2a^{2}\right)
Whakaarohia te -3a^{2}+9a-2a^{3}. Tauwehea te a.
-2a^{2}-3a+9
Whakaarohia te -3a+9-2a^{2}. Hurinahatia te pūrau ki te āhua tānga ngahuru. Whakaraupapahia ngā kīanga tau mai i te pū teitei rawa ki te mea iti rawa.
p+q=-3 pq=-2\times 9=-18
Whakatauwehea te kīanga mā te whakarōpū. Tuatahi, me tuhi anō te kīanga hei -2a^{2}+pa+qa+9. Hei kimi p me q, whakaritea tētahi pūnaha kia whakaoti.
1,-18 2,-9 3,-6
I te mea kua tōraro te pq, he tauaro ngā tohu o p me q. I te mea kua tōraro te p+q, he nui ake te uara pū o te tau tōraro i tō te tōrunga. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua -18.
1-18=-17 2-9=-7 3-6=-3
Tātaihia te tapeke mō ia takirua.
p=3 q=-6
Ko te otinga te takirua ka hoatu i te tapeke -3.
\left(-2a^{2}+3a\right)+\left(-6a+9\right)
Tuhia anō te -2a^{2}-3a+9 hei \left(-2a^{2}+3a\right)+\left(-6a+9\right).
-a\left(2a-3\right)-3\left(2a-3\right)
Tauwehea te -a i te tuatahi me te -3 i te rōpū tuarua.
\left(2a-3\right)\left(-a-3\right)
Whakatauwehea atu te kīanga pātahi 2a-3 mā te whakamahi i te āhuatanga tātai tohatoha.
9a\left(2a-3\right)\left(-a-3\right)
Me tuhi anō te kīanga whakatauwehe katoa.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}