Aromātai
1029
Tauwehe
3\times 7^{3}
Pātaitai
Arithmetic
5 raruraru e ōrite ana ki:
- 23 + 28 + 97 + 152 + 184 + 197 + 111 + 153 + 94 + 36 + 01 =
Tohaina
Kua tāruatia ki te papatopenga
5+97+152+184+197+111+153+94+36+0\times 1
Tāpirihia te -23 ki te 28, ka 5.
102+152+184+197+111+153+94+36+0\times 1
Tāpirihia te 5 ki te 97, ka 102.
254+184+197+111+153+94+36+0\times 1
Tāpirihia te 102 ki te 152, ka 254.
438+197+111+153+94+36+0\times 1
Tāpirihia te 254 ki te 184, ka 438.
635+111+153+94+36+0\times 1
Tāpirihia te 438 ki te 197, ka 635.
746+153+94+36+0\times 1
Tāpirihia te 635 ki te 111, ka 746.
899+94+36+0\times 1
Tāpirihia te 746 ki te 153, ka 899.
993+36+0\times 1
Tāpirihia te 899 ki te 94, ka 993.
1029+0\times 1
Tāpirihia te 993 ki te 36, ka 1029.
1029+0
Whakareatia te 0 ki te 1, ka 0.
1029
Tāpirihia te 1029 ki te 0, ka 1029.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}