Whakaoti mō t
t=\sqrt{238694}-509\approx -20.436800403
t=-\sqrt{238694}-509\approx -997.563199597
Tohaina
Kua tāruatia ki te papatopenga
1018t+t^{2}=-20387
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
1018t+t^{2}+20387=0
Me tāpiri te 20387 ki ngā taha e rua.
t^{2}+1018t+20387=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
t=\frac{-1018±\sqrt{1018^{2}-4\times 20387}}{2}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 1 mō a, 1018 mō b, me 20387 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
t=\frac{-1018±\sqrt{1036324-4\times 20387}}{2}
Pūrua 1018.
t=\frac{-1018±\sqrt{1036324-81548}}{2}
Whakareatia -4 ki te 20387.
t=\frac{-1018±\sqrt{954776}}{2}
Tāpiri 1036324 ki te -81548.
t=\frac{-1018±2\sqrt{238694}}{2}
Tuhia te pūtakerua o te 954776.
t=\frac{2\sqrt{238694}-1018}{2}
Nā, me whakaoti te whārite t=\frac{-1018±2\sqrt{238694}}{2} ina he tāpiri te ±. Tāpiri -1018 ki te 2\sqrt{238694}.
t=\sqrt{238694}-509
Whakawehe -1018+2\sqrt{238694} ki te 2.
t=\frac{-2\sqrt{238694}-1018}{2}
Nā, me whakaoti te whārite t=\frac{-1018±2\sqrt{238694}}{2} ina he tango te ±. Tango 2\sqrt{238694} mai i -1018.
t=-\sqrt{238694}-509
Whakawehe -1018-2\sqrt{238694} ki te 2.
t=\sqrt{238694}-509 t=-\sqrt{238694}-509
Kua oti te whārite te whakatau.
1018t+t^{2}=-20387
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
t^{2}+1018t=-20387
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
t^{2}+1018t+509^{2}=-20387+509^{2}
Whakawehea te 1018, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te 509. Nā, tāpiria te pūrua o te 509 ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
t^{2}+1018t+259081=-20387+259081
Pūrua 509.
t^{2}+1018t+259081=238694
Tāpiri -20387 ki te 259081.
\left(t+509\right)^{2}=238694
Tauwehea t^{2}+1018t+259081. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(t+509\right)^{2}}=\sqrt{238694}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
t+509=\sqrt{238694} t+509=-\sqrt{238694}
Whakarūnātia.
t=\sqrt{238694}-509 t=-\sqrt{238694}-509
Me tango 509 mai i ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}