Tauwehe
-q\left(4m-5\right)\left(5m+7\right)
Aromātai
-q\left(4m-5\right)\left(5m+7\right)
Tohaina
Kua tāruatia ki te papatopenga
q\left(-20m^{2}-3m+35\right)
Tauwehea te q.
a+b=-3 ab=-20\times 35=-700
Whakaarohia te -20m^{2}-3m+35. Whakatauwehea te kīanga mā te whakarōpū. Tuatahi, me tuhi anō te kīanga hei -20m^{2}+am+bm+35. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
1,-700 2,-350 4,-175 5,-140 7,-100 10,-70 14,-50 20,-35 25,-28
I te mea kua tōraro te ab, he tauaro ngā tohu o a me b. I te mea kua tōraro te a+b, he nui ake te uara pū o te tau tōraro i tō te tōrunga. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua -700.
1-700=-699 2-350=-348 4-175=-171 5-140=-135 7-100=-93 10-70=-60 14-50=-36 20-35=-15 25-28=-3
Tātaihia te tapeke mō ia takirua.
a=25 b=-28
Ko te otinga te takirua ka hoatu i te tapeke -3.
\left(-20m^{2}+25m\right)+\left(-28m+35\right)
Tuhia anō te -20m^{2}-3m+35 hei \left(-20m^{2}+25m\right)+\left(-28m+35\right).
-5m\left(4m-5\right)-7\left(4m-5\right)
Tauwehea te -5m i te tuatahi me te -7 i te rōpū tuarua.
\left(4m-5\right)\left(-5m-7\right)
Whakatauwehea atu te kīanga pātahi 4m-5 mā te whakamahi i te āhuatanga tātai tohatoha.
q\left(4m-5\right)\left(-5m-7\right)
Me tuhi anō te kīanga whakatauwehe katoa.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}