Whakaoti mō y
y=\frac{\sqrt{19}-3}{2}\approx 0.679449472
y=\frac{-\sqrt{19}-3}{2}\approx -3.679449472
Graph
Tohaina
Kua tāruatia ki te papatopenga
-2y^{2}-6y+5=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
y=\frac{-\left(-6\right)±\sqrt{\left(-6\right)^{2}-4\left(-2\right)\times 5}}{2\left(-2\right)}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi -2 mō a, -6 mō b, me 5 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
y=\frac{-\left(-6\right)±\sqrt{36-4\left(-2\right)\times 5}}{2\left(-2\right)}
Pūrua -6.
y=\frac{-\left(-6\right)±\sqrt{36+8\times 5}}{2\left(-2\right)}
Whakareatia -4 ki te -2.
y=\frac{-\left(-6\right)±\sqrt{36+40}}{2\left(-2\right)}
Whakareatia 8 ki te 5.
y=\frac{-\left(-6\right)±\sqrt{76}}{2\left(-2\right)}
Tāpiri 36 ki te 40.
y=\frac{-\left(-6\right)±2\sqrt{19}}{2\left(-2\right)}
Tuhia te pūtakerua o te 76.
y=\frac{6±2\sqrt{19}}{2\left(-2\right)}
Ko te tauaro o -6 ko 6.
y=\frac{6±2\sqrt{19}}{-4}
Whakareatia 2 ki te -2.
y=\frac{2\sqrt{19}+6}{-4}
Nā, me whakaoti te whārite y=\frac{6±2\sqrt{19}}{-4} ina he tāpiri te ±. Tāpiri 6 ki te 2\sqrt{19}.
y=\frac{-\sqrt{19}-3}{2}
Whakawehe 6+2\sqrt{19} ki te -4.
y=\frac{6-2\sqrt{19}}{-4}
Nā, me whakaoti te whārite y=\frac{6±2\sqrt{19}}{-4} ina he tango te ±. Tango 2\sqrt{19} mai i 6.
y=\frac{\sqrt{19}-3}{2}
Whakawehe 6-2\sqrt{19} ki te -4.
y=\frac{-\sqrt{19}-3}{2} y=\frac{\sqrt{19}-3}{2}
Kua oti te whārite te whakatau.
-2y^{2}-6y+5=0
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
-2y^{2}-6y+5-5=-5
Me tango 5 mai i ngā taha e rua o te whārite.
-2y^{2}-6y=-5
Mā te tango i te 5 i a ia ake anō ka toe ko te 0.
\frac{-2y^{2}-6y}{-2}=-\frac{5}{-2}
Whakawehea ngā taha e rua ki te -2.
y^{2}+\left(-\frac{6}{-2}\right)y=-\frac{5}{-2}
Mā te whakawehe ki te -2 ka wetekia te whakareanga ki te -2.
y^{2}+3y=-\frac{5}{-2}
Whakawehe -6 ki te -2.
y^{2}+3y=\frac{5}{2}
Whakawehe -5 ki te -2.
y^{2}+3y+\left(\frac{3}{2}\right)^{2}=\frac{5}{2}+\left(\frac{3}{2}\right)^{2}
Whakawehea te 3, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te \frac{3}{2}. Nā, tāpiria te pūrua o te \frac{3}{2} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
y^{2}+3y+\frac{9}{4}=\frac{5}{2}+\frac{9}{4}
Pūruatia \frac{3}{2} mā te pūrua i te taurunga me te tauraro o te hautanga.
y^{2}+3y+\frac{9}{4}=\frac{19}{4}
Tāpiri \frac{5}{2} ki te \frac{9}{4} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
\left(y+\frac{3}{2}\right)^{2}=\frac{19}{4}
Tauwehea y^{2}+3y+\frac{9}{4}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(y+\frac{3}{2}\right)^{2}}=\sqrt{\frac{19}{4}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
y+\frac{3}{2}=\frac{\sqrt{19}}{2} y+\frac{3}{2}=-\frac{\sqrt{19}}{2}
Whakarūnātia.
y=\frac{\sqrt{19}-3}{2} y=\frac{-\sqrt{19}-3}{2}
Me tango \frac{3}{2} mai i ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}