Whakaoti mō x, y
x=-4
y=-2
Graph
Tohaina
Kua tāruatia ki te papatopenga
-2x-y=10,3x-4y=-4
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
-2x-y=10
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
-2x=y+10
Me tāpiri y ki ngā taha e rua o te whārite.
x=-\frac{1}{2}\left(y+10\right)
Whakawehea ngā taha e rua ki te -2.
x=-\frac{1}{2}y-5
Whakareatia -\frac{1}{2} ki te y+10.
3\left(-\frac{1}{2}y-5\right)-4y=-4
Whakakapia te -\frac{y}{2}-5 mō te x ki tērā atu whārite, 3x-4y=-4.
-\frac{3}{2}y-15-4y=-4
Whakareatia 3 ki te -\frac{y}{2}-5.
-\frac{11}{2}y-15=-4
Tāpiri -\frac{3y}{2} ki te -4y.
-\frac{11}{2}y=11
Me tāpiri 15 ki ngā taha e rua o te whārite.
y=-2
Whakawehea ngā taha e rua o te whārite ki te -\frac{11}{2}, he ōrite ki te whakarea i ngā taha e rua ki te tau huripoki o te hautanga.
x=-\frac{1}{2}\left(-2\right)-5
Whakaurua te -2 mō y ki x=-\frac{1}{2}y-5. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=1-5
Whakareatia -\frac{1}{2} ki te -2.
x=-4
Tāpiri -5 ki te 1.
x=-4,y=-2
Kua oti te pūnaha te whakatau.
-2x-y=10,3x-4y=-4
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}-2&-1\\3&-4\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}10\\-4\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}-2&-1\\3&-4\end{matrix}\right))\left(\begin{matrix}-2&-1\\3&-4\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-2&-1\\3&-4\end{matrix}\right))\left(\begin{matrix}10\\-4\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}-2&-1\\3&-4\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-2&-1\\3&-4\end{matrix}\right))\left(\begin{matrix}10\\-4\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-2&-1\\3&-4\end{matrix}\right))\left(\begin{matrix}10\\-4\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{4}{-2\left(-4\right)-\left(-3\right)}&-\frac{-1}{-2\left(-4\right)-\left(-3\right)}\\-\frac{3}{-2\left(-4\right)-\left(-3\right)}&-\frac{2}{-2\left(-4\right)-\left(-3\right)}\end{matrix}\right)\left(\begin{matrix}10\\-4\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{4}{11}&\frac{1}{11}\\-\frac{3}{11}&-\frac{2}{11}\end{matrix}\right)\left(\begin{matrix}10\\-4\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{4}{11}\times 10+\frac{1}{11}\left(-4\right)\\-\frac{3}{11}\times 10-\frac{2}{11}\left(-4\right)\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-4\\-2\end{matrix}\right)
Mahia ngā tātaitanga.
x=-4,y=-2
Tangohia ngā huānga poukapa x me y.
-2x-y=10,3x-4y=-4
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
3\left(-2\right)x+3\left(-1\right)y=3\times 10,-2\times 3x-2\left(-4\right)y=-2\left(-4\right)
Kia ōrite ai a -2x me 3x, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te 3 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te -2.
-6x-3y=30,-6x+8y=8
Whakarūnātia.
-6x+6x-3y-8y=30-8
Me tango -6x+8y=8 mai i -6x-3y=30 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
-3y-8y=30-8
Tāpiri -6x ki te 6x. Ka whakakore atu ngā kupu -6x me 6x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
-11y=30-8
Tāpiri -3y ki te -8y.
-11y=22
Tāpiri 30 ki te -8.
y=-2
Whakawehea ngā taha e rua ki te -11.
3x-4\left(-2\right)=-4
Whakaurua te -2 mō y ki 3x-4y=-4. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
3x+8=-4
Whakareatia -4 ki te -2.
3x=-12
Me tango 8 mai i ngā taha e rua o te whārite.
x=-4
Whakawehea ngā taha e rua ki te 3.
x=-4,y=-2
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}