Whakaoti mō x (complex solution)
x=-1-3i
x=-1+3i
Graph
Tohaina
Kua tāruatia ki te papatopenga
-2x-2-x^{2}=8
Tangohia te x^{2} mai i ngā taha e rua.
-2x-2-x^{2}-8=0
Tangohia te 8 mai i ngā taha e rua.
-2x-10-x^{2}=0
Tangohia te 8 i te -2, ka -10.
-x^{2}-2x-10=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-\left(-2\right)±\sqrt{\left(-2\right)^{2}-4\left(-1\right)\left(-10\right)}}{2\left(-1\right)}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi -1 mō a, -2 mō b, me -10 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-2\right)±\sqrt{4-4\left(-1\right)\left(-10\right)}}{2\left(-1\right)}
Pūrua -2.
x=\frac{-\left(-2\right)±\sqrt{4+4\left(-10\right)}}{2\left(-1\right)}
Whakareatia -4 ki te -1.
x=\frac{-\left(-2\right)±\sqrt{4-40}}{2\left(-1\right)}
Whakareatia 4 ki te -10.
x=\frac{-\left(-2\right)±\sqrt{-36}}{2\left(-1\right)}
Tāpiri 4 ki te -40.
x=\frac{-\left(-2\right)±6i}{2\left(-1\right)}
Tuhia te pūtakerua o te -36.
x=\frac{2±6i}{2\left(-1\right)}
Ko te tauaro o -2 ko 2.
x=\frac{2±6i}{-2}
Whakareatia 2 ki te -1.
x=\frac{2+6i}{-2}
Nā, me whakaoti te whārite x=\frac{2±6i}{-2} ina he tāpiri te ±. Tāpiri 2 ki te 6i.
x=-1-3i
Whakawehe 2+6i ki te -2.
x=\frac{2-6i}{-2}
Nā, me whakaoti te whārite x=\frac{2±6i}{-2} ina he tango te ±. Tango 6i mai i 2.
x=-1+3i
Whakawehe 2-6i ki te -2.
x=-1-3i x=-1+3i
Kua oti te whārite te whakatau.
-2x-2-x^{2}=8
Tangohia te x^{2} mai i ngā taha e rua.
-2x-x^{2}=8+2
Me tāpiri te 2 ki ngā taha e rua.
-2x-x^{2}=10
Tāpirihia te 8 ki te 2, ka 10.
-x^{2}-2x=10
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
\frac{-x^{2}-2x}{-1}=\frac{10}{-1}
Whakawehea ngā taha e rua ki te -1.
x^{2}+\left(-\frac{2}{-1}\right)x=\frac{10}{-1}
Mā te whakawehe ki te -1 ka wetekia te whakareanga ki te -1.
x^{2}+2x=\frac{10}{-1}
Whakawehe -2 ki te -1.
x^{2}+2x=-10
Whakawehe 10 ki te -1.
x^{2}+2x+1^{2}=-10+1^{2}
Whakawehea te 2, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te 1. Nā, tāpiria te pūrua o te 1 ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}+2x+1=-10+1
Pūrua 1.
x^{2}+2x+1=-9
Tāpiri -10 ki te 1.
\left(x+1\right)^{2}=-9
Tauwehea x^{2}+2x+1. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+1\right)^{2}}=\sqrt{-9}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x+1=3i x+1=-3i
Whakarūnātia.
x=-1+3i x=-1-3i
Me tango 1 mai i ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}