Tīpoka ki ngā ihirangi matua
Whakaoti mō x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

-2x^{2}-3x=0
Tangohia te 3x mai i ngā taha e rua.
x\left(-2x-3\right)=0
Tauwehea te x.
x=0 x=-\frac{3}{2}
Hei kimi otinga whārite, me whakaoti te x=0 me te -2x-3=0.
-2x^{2}-3x=0
Tangohia te 3x mai i ngā taha e rua.
x=\frac{-\left(-3\right)±\sqrt{\left(-3\right)^{2}}}{2\left(-2\right)}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi -2 mō a, -3 mō b, me 0 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-3\right)±3}{2\left(-2\right)}
Tuhia te pūtakerua o te \left(-3\right)^{2}.
x=\frac{3±3}{2\left(-2\right)}
Ko te tauaro o -3 ko 3.
x=\frac{3±3}{-4}
Whakareatia 2 ki te -2.
x=\frac{6}{-4}
Nā, me whakaoti te whārite x=\frac{3±3}{-4} ina he tāpiri te ±. Tāpiri 3 ki te 3.
x=-\frac{3}{2}
Whakahekea te hautanga \frac{6}{-4} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
x=\frac{0}{-4}
Nā, me whakaoti te whārite x=\frac{3±3}{-4} ina he tango te ±. Tango 3 mai i 3.
x=0
Whakawehe 0 ki te -4.
x=-\frac{3}{2} x=0
Kua oti te whārite te whakatau.
-2x^{2}-3x=0
Tangohia te 3x mai i ngā taha e rua.
\frac{-2x^{2}-3x}{-2}=\frac{0}{-2}
Whakawehea ngā taha e rua ki te -2.
x^{2}+\left(-\frac{3}{-2}\right)x=\frac{0}{-2}
Mā te whakawehe ki te -2 ka wetekia te whakareanga ki te -2.
x^{2}+\frac{3}{2}x=\frac{0}{-2}
Whakawehe -3 ki te -2.
x^{2}+\frac{3}{2}x=0
Whakawehe 0 ki te -2.
x^{2}+\frac{3}{2}x+\left(\frac{3}{4}\right)^{2}=\left(\frac{3}{4}\right)^{2}
Whakawehea te \frac{3}{2}, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te \frac{3}{4}. Nā, tāpiria te pūrua o te \frac{3}{4} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}+\frac{3}{2}x+\frac{9}{16}=\frac{9}{16}
Pūruatia \frac{3}{4} mā te pūrua i te taurunga me te tauraro o te hautanga.
\left(x+\frac{3}{4}\right)^{2}=\frac{9}{16}
Tauwehea x^{2}+\frac{3}{2}x+\frac{9}{16}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{3}{4}\right)^{2}}=\sqrt{\frac{9}{16}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x+\frac{3}{4}=\frac{3}{4} x+\frac{3}{4}=-\frac{3}{4}
Whakarūnātia.
x=0 x=-\frac{3}{2}
Me tango \frac{3}{4} mai i ngā taha e rua o te whārite.