Whakaoti mō x
x=1
x=-\frac{1}{2}=-0.5
Graph
Tohaina
Kua tāruatia ki te papatopenga
a+b=1 ab=-2=-2
Hei whakaoti i te whārite, whakatauwehea te taha mauī mā te whakarōpū. Tuatahi, me tuhi anō te taha mauī hei -2x^{2}+ax+bx+1. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
a=2 b=-1
I te mea kua tōraro te ab, he tauaro ngā tohu o a me b. I te mea kua tōrunga te a+b, he nui ake te uara pū o te tau tōrunga i tō te tōraro. Ko te takirua anake pērā ko te otinga pūnaha.
\left(-2x^{2}+2x\right)+\left(-x+1\right)
Tuhia anō te -2x^{2}+x+1 hei \left(-2x^{2}+2x\right)+\left(-x+1\right).
2x\left(-x+1\right)-x+1
Whakatauwehea atu 2x i te -2x^{2}+2x.
\left(-x+1\right)\left(2x+1\right)
Whakatauwehea atu te kīanga pātahi -x+1 mā te whakamahi i te āhuatanga tātai tohatoha.
x=1 x=-\frac{1}{2}
Hei kimi otinga whārite, me whakaoti te -x+1=0 me te 2x+1=0.
-2x^{2}+x+1=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-1±\sqrt{1^{2}-4\left(-2\right)}}{2\left(-2\right)}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi -2 mō a, 1 mō b, me 1 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-1±\sqrt{1-4\left(-2\right)}}{2\left(-2\right)}
Pūrua 1.
x=\frac{-1±\sqrt{1+8}}{2\left(-2\right)}
Whakareatia -4 ki te -2.
x=\frac{-1±\sqrt{9}}{2\left(-2\right)}
Tāpiri 1 ki te 8.
x=\frac{-1±3}{2\left(-2\right)}
Tuhia te pūtakerua o te 9.
x=\frac{-1±3}{-4}
Whakareatia 2 ki te -2.
x=\frac{2}{-4}
Nā, me whakaoti te whārite x=\frac{-1±3}{-4} ina he tāpiri te ±. Tāpiri -1 ki te 3.
x=-\frac{1}{2}
Whakahekea te hautanga \frac{2}{-4} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
x=-\frac{4}{-4}
Nā, me whakaoti te whārite x=\frac{-1±3}{-4} ina he tango te ±. Tango 3 mai i -1.
x=1
Whakawehe -4 ki te -4.
x=-\frac{1}{2} x=1
Kua oti te whārite te whakatau.
-2x^{2}+x+1=0
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
-2x^{2}+x+1-1=-1
Me tango 1 mai i ngā taha e rua o te whārite.
-2x^{2}+x=-1
Mā te tango i te 1 i a ia ake anō ka toe ko te 0.
\frac{-2x^{2}+x}{-2}=-\frac{1}{-2}
Whakawehea ngā taha e rua ki te -2.
x^{2}+\frac{1}{-2}x=-\frac{1}{-2}
Mā te whakawehe ki te -2 ka wetekia te whakareanga ki te -2.
x^{2}-\frac{1}{2}x=-\frac{1}{-2}
Whakawehe 1 ki te -2.
x^{2}-\frac{1}{2}x=\frac{1}{2}
Whakawehe -1 ki te -2.
x^{2}-\frac{1}{2}x+\left(-\frac{1}{4}\right)^{2}=\frac{1}{2}+\left(-\frac{1}{4}\right)^{2}
Whakawehea te -\frac{1}{2}, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -\frac{1}{4}. Nā, tāpiria te pūrua o te -\frac{1}{4} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}-\frac{1}{2}x+\frac{1}{16}=\frac{1}{2}+\frac{1}{16}
Pūruatia -\frac{1}{4} mā te pūrua i te taurunga me te tauraro o te hautanga.
x^{2}-\frac{1}{2}x+\frac{1}{16}=\frac{9}{16}
Tāpiri \frac{1}{2} ki te \frac{1}{16} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
\left(x-\frac{1}{4}\right)^{2}=\frac{9}{16}
Tauwehea x^{2}-\frac{1}{2}x+\frac{1}{16}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{1}{4}\right)^{2}}=\sqrt{\frac{9}{16}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x-\frac{1}{4}=\frac{3}{4} x-\frac{1}{4}=-\frac{3}{4}
Whakarūnātia.
x=1 x=-\frac{1}{2}
Me tāpiri \frac{1}{4} ki ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}