Whakaoti mō x
x=-2
x=5
Graph
Tohaina
Kua tāruatia ki te papatopenga
-2x^{2}+6x+16+4=0
Me tāpiri te 4 ki ngā taha e rua.
-2x^{2}+6x+20=0
Tāpirihia te 16 ki te 4, ka 20.
-x^{2}+3x+10=0
Whakawehea ngā taha e rua ki te 2.
a+b=3 ab=-10=-10
Hei whakaoti i te whārite, whakatauwehea te taha mauī mā te whakarōpū. Tuatahi, me tuhi anō te taha mauī hei -x^{2}+ax+bx+10. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
-1,10 -2,5
I te mea kua tōraro te ab, he tauaro ngā tohu o a me b. I te mea kua tōrunga te a+b, he nui ake te uara pū o te tau tōrunga i tō te tōraro. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua -10.
-1+10=9 -2+5=3
Tātaihia te tapeke mō ia takirua.
a=5 b=-2
Ko te otinga te takirua ka hoatu i te tapeke 3.
\left(-x^{2}+5x\right)+\left(-2x+10\right)
Tuhia anō te -x^{2}+3x+10 hei \left(-x^{2}+5x\right)+\left(-2x+10\right).
-x\left(x-5\right)-2\left(x-5\right)
Tauwehea te -x i te tuatahi me te -2 i te rōpū tuarua.
\left(x-5\right)\left(-x-2\right)
Whakatauwehea atu te kīanga pātahi x-5 mā te whakamahi i te āhuatanga tātai tohatoha.
x=5 x=-2
Hei kimi otinga whārite, me whakaoti te x-5=0 me te -x-2=0.
-2x^{2}+6x+16=-4
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
-2x^{2}+6x+16-\left(-4\right)=-4-\left(-4\right)
Me tāpiri 4 ki ngā taha e rua o te whārite.
-2x^{2}+6x+16-\left(-4\right)=0
Mā te tango i te -4 i a ia ake anō ka toe ko te 0.
-2x^{2}+6x+20=0
Tango -4 mai i 16.
x=\frac{-6±\sqrt{6^{2}-4\left(-2\right)\times 20}}{2\left(-2\right)}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi -2 mō a, 6 mō b, me 20 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-6±\sqrt{36-4\left(-2\right)\times 20}}{2\left(-2\right)}
Pūrua 6.
x=\frac{-6±\sqrt{36+8\times 20}}{2\left(-2\right)}
Whakareatia -4 ki te -2.
x=\frac{-6±\sqrt{36+160}}{2\left(-2\right)}
Whakareatia 8 ki te 20.
x=\frac{-6±\sqrt{196}}{2\left(-2\right)}
Tāpiri 36 ki te 160.
x=\frac{-6±14}{2\left(-2\right)}
Tuhia te pūtakerua o te 196.
x=\frac{-6±14}{-4}
Whakareatia 2 ki te -2.
x=\frac{8}{-4}
Nā, me whakaoti te whārite x=\frac{-6±14}{-4} ina he tāpiri te ±. Tāpiri -6 ki te 14.
x=-2
Whakawehe 8 ki te -4.
x=-\frac{20}{-4}
Nā, me whakaoti te whārite x=\frac{-6±14}{-4} ina he tango te ±. Tango 14 mai i -6.
x=5
Whakawehe -20 ki te -4.
x=-2 x=5
Kua oti te whārite te whakatau.
-2x^{2}+6x+16=-4
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
-2x^{2}+6x+16-16=-4-16
Me tango 16 mai i ngā taha e rua o te whārite.
-2x^{2}+6x=-4-16
Mā te tango i te 16 i a ia ake anō ka toe ko te 0.
-2x^{2}+6x=-20
Tango 16 mai i -4.
\frac{-2x^{2}+6x}{-2}=-\frac{20}{-2}
Whakawehea ngā taha e rua ki te -2.
x^{2}+\frac{6}{-2}x=-\frac{20}{-2}
Mā te whakawehe ki te -2 ka wetekia te whakareanga ki te -2.
x^{2}-3x=-\frac{20}{-2}
Whakawehe 6 ki te -2.
x^{2}-3x=10
Whakawehe -20 ki te -2.
x^{2}-3x+\left(-\frac{3}{2}\right)^{2}=10+\left(-\frac{3}{2}\right)^{2}
Whakawehea te -3, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -\frac{3}{2}. Nā, tāpiria te pūrua o te -\frac{3}{2} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}-3x+\frac{9}{4}=10+\frac{9}{4}
Pūruatia -\frac{3}{2} mā te pūrua i te taurunga me te tauraro o te hautanga.
x^{2}-3x+\frac{9}{4}=\frac{49}{4}
Tāpiri 10 ki te \frac{9}{4}.
\left(x-\frac{3}{2}\right)^{2}=\frac{49}{4}
Tauwehea x^{2}-3x+\frac{9}{4}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{3}{2}\right)^{2}}=\sqrt{\frac{49}{4}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x-\frac{3}{2}=\frac{7}{2} x-\frac{3}{2}=-\frac{7}{2}
Whakarūnātia.
x=5 x=-2
Me tāpiri \frac{3}{2} ki ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}