Tīpoka ki ngā ihirangi matua
Tauwehe
Tick mark Image
Aromātai
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

-2x^{2}+4x+3=0
Ka taea te huamaha pūrua te tauwehe mā te whakamahi i te huringa ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), ina ko x_{1} me x_{2} ngā otinga o te whārite pūrua ax^{2}+bx+c=0.
x=\frac{-4±\sqrt{4^{2}-4\left(-2\right)\times 3}}{2\left(-2\right)}
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-4±\sqrt{16-4\left(-2\right)\times 3}}{2\left(-2\right)}
Pūrua 4.
x=\frac{-4±\sqrt{16+8\times 3}}{2\left(-2\right)}
Whakareatia -4 ki te -2.
x=\frac{-4±\sqrt{16+24}}{2\left(-2\right)}
Whakareatia 8 ki te 3.
x=\frac{-4±\sqrt{40}}{2\left(-2\right)}
Tāpiri 16 ki te 24.
x=\frac{-4±2\sqrt{10}}{2\left(-2\right)}
Tuhia te pūtakerua o te 40.
x=\frac{-4±2\sqrt{10}}{-4}
Whakareatia 2 ki te -2.
x=\frac{2\sqrt{10}-4}{-4}
Nā, me whakaoti te whārite x=\frac{-4±2\sqrt{10}}{-4} ina he tāpiri te ±. Tāpiri -4 ki te 2\sqrt{10}.
x=-\frac{\sqrt{10}}{2}+1
Whakawehe -4+2\sqrt{10} ki te -4.
x=\frac{-2\sqrt{10}-4}{-4}
Nā, me whakaoti te whārite x=\frac{-4±2\sqrt{10}}{-4} ina he tango te ±. Tango 2\sqrt{10} mai i -4.
x=\frac{\sqrt{10}}{2}+1
Whakawehe -4-2\sqrt{10} ki te -4.
-2x^{2}+4x+3=-2\left(x-\left(-\frac{\sqrt{10}}{2}+1\right)\right)\left(x-\left(\frac{\sqrt{10}}{2}+1\right)\right)
Tauwehea te kīanga taketake mā te whakamahi i te ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Me whakakapi te 1-\frac{\sqrt{10}}{2} mō te x_{1} me te 1+\frac{\sqrt{10}}{2} mō te x_{2}.