Tauwehe
2\left(1-x\right)\left(x-12\right)
Aromātai
2\left(1-x\right)\left(x-12\right)
Graph
Tohaina
Kua tāruatia ki te papatopenga
2\left(-x^{2}+13x-12\right)
Tauwehea te 2.
a+b=13 ab=-\left(-12\right)=12
Whakaarohia te -x^{2}+13x-12. Whakatauwehea te kīanga mā te whakarōpū. Tuatahi, me tuhi anō te kīanga hei -x^{2}+ax+bx-12. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
1,12 2,6 3,4
I te mea kua tōrunga te ab, he ōrite te tohu o a me b. I te mea kua tōrunga te a+b, he tōrunga hoki a a me b. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua 12.
1+12=13 2+6=8 3+4=7
Tātaihia te tapeke mō ia takirua.
a=12 b=1
Ko te otinga te takirua ka hoatu i te tapeke 13.
\left(-x^{2}+12x\right)+\left(x-12\right)
Tuhia anō te -x^{2}+13x-12 hei \left(-x^{2}+12x\right)+\left(x-12\right).
-x\left(x-12\right)+x-12
Whakatauwehea atu -x i te -x^{2}+12x.
\left(x-12\right)\left(-x+1\right)
Whakatauwehea atu te kīanga pātahi x-12 mā te whakamahi i te āhuatanga tātai tohatoha.
2\left(x-12\right)\left(-x+1\right)
Me tuhi anō te kīanga whakatauwehe katoa.
-2x^{2}+26x-24=0
Ka taea te huamaha pūrua te tauwehe mā te whakamahi i te huringa ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), ina ko x_{1} me x_{2} ngā otinga o te whārite pūrua ax^{2}+bx+c=0.
x=\frac{-26±\sqrt{26^{2}-4\left(-2\right)\left(-24\right)}}{2\left(-2\right)}
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-26±\sqrt{676-4\left(-2\right)\left(-24\right)}}{2\left(-2\right)}
Pūrua 26.
x=\frac{-26±\sqrt{676+8\left(-24\right)}}{2\left(-2\right)}
Whakareatia -4 ki te -2.
x=\frac{-26±\sqrt{676-192}}{2\left(-2\right)}
Whakareatia 8 ki te -24.
x=\frac{-26±\sqrt{484}}{2\left(-2\right)}
Tāpiri 676 ki te -192.
x=\frac{-26±22}{2\left(-2\right)}
Tuhia te pūtakerua o te 484.
x=\frac{-26±22}{-4}
Whakareatia 2 ki te -2.
x=-\frac{4}{-4}
Nā, me whakaoti te whārite x=\frac{-26±22}{-4} ina he tāpiri te ±. Tāpiri -26 ki te 22.
x=1
Whakawehe -4 ki te -4.
x=-\frac{48}{-4}
Nā, me whakaoti te whārite x=\frac{-26±22}{-4} ina he tango te ±. Tango 22 mai i -26.
x=12
Whakawehe -48 ki te -4.
-2x^{2}+26x-24=-2\left(x-1\right)\left(x-12\right)
Tauwehea te kīanga taketake mā te whakamahi i te ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Me whakakapi te 1 mō te x_{1} me te 12 mō te x_{2}.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}