Whakaoti mō x
x=-1
x = \frac{9}{2} = 4\frac{1}{2} = 4.5
Graph
Tohaina
Kua tāruatia ki te papatopenga
-2x^{2}+2x+9+5x=0
Me tāpiri te 5x ki ngā taha e rua.
-2x^{2}+7x+9=0
Pahekotia te 2x me 5x, ka 7x.
a+b=7 ab=-2\times 9=-18
Hei whakaoti i te whārite, whakatauwehea te taha mauī mā te whakarōpū. Tuatahi, me tuhi anō te taha mauī hei -2x^{2}+ax+bx+9. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
-1,18 -2,9 -3,6
I te mea kua tōraro te ab, he tauaro ngā tohu o a me b. I te mea kua tōrunga te a+b, he nui ake te uara pū o te tau tōrunga i tō te tōraro. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua -18.
-1+18=17 -2+9=7 -3+6=3
Tātaihia te tapeke mō ia takirua.
a=9 b=-2
Ko te otinga te takirua ka hoatu i te tapeke 7.
\left(-2x^{2}+9x\right)+\left(-2x+9\right)
Tuhia anō te -2x^{2}+7x+9 hei \left(-2x^{2}+9x\right)+\left(-2x+9\right).
-x\left(2x-9\right)-\left(2x-9\right)
Tauwehea te -x i te tuatahi me te -1 i te rōpū tuarua.
\left(2x-9\right)\left(-x-1\right)
Whakatauwehea atu te kīanga pātahi 2x-9 mā te whakamahi i te āhuatanga tātai tohatoha.
x=\frac{9}{2} x=-1
Hei kimi otinga whārite, me whakaoti te 2x-9=0 me te -x-1=0.
-2x^{2}+2x+9+5x=0
Me tāpiri te 5x ki ngā taha e rua.
-2x^{2}+7x+9=0
Pahekotia te 2x me 5x, ka 7x.
x=\frac{-7±\sqrt{7^{2}-4\left(-2\right)\times 9}}{2\left(-2\right)}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi -2 mō a, 7 mō b, me 9 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-7±\sqrt{49-4\left(-2\right)\times 9}}{2\left(-2\right)}
Pūrua 7.
x=\frac{-7±\sqrt{49+8\times 9}}{2\left(-2\right)}
Whakareatia -4 ki te -2.
x=\frac{-7±\sqrt{49+72}}{2\left(-2\right)}
Whakareatia 8 ki te 9.
x=\frac{-7±\sqrt{121}}{2\left(-2\right)}
Tāpiri 49 ki te 72.
x=\frac{-7±11}{2\left(-2\right)}
Tuhia te pūtakerua o te 121.
x=\frac{-7±11}{-4}
Whakareatia 2 ki te -2.
x=\frac{4}{-4}
Nā, me whakaoti te whārite x=\frac{-7±11}{-4} ina he tāpiri te ±. Tāpiri -7 ki te 11.
x=-1
Whakawehe 4 ki te -4.
x=-\frac{18}{-4}
Nā, me whakaoti te whārite x=\frac{-7±11}{-4} ina he tango te ±. Tango 11 mai i -7.
x=\frac{9}{2}
Whakahekea te hautanga \frac{-18}{-4} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
x=-1 x=\frac{9}{2}
Kua oti te whārite te whakatau.
-2x^{2}+2x+9+5x=0
Me tāpiri te 5x ki ngā taha e rua.
-2x^{2}+7x+9=0
Pahekotia te 2x me 5x, ka 7x.
-2x^{2}+7x=-9
Tangohia te 9 mai i ngā taha e rua. Ko te tau i tango i te kore ka hua ko tōna korenga.
\frac{-2x^{2}+7x}{-2}=-\frac{9}{-2}
Whakawehea ngā taha e rua ki te -2.
x^{2}+\frac{7}{-2}x=-\frac{9}{-2}
Mā te whakawehe ki te -2 ka wetekia te whakareanga ki te -2.
x^{2}-\frac{7}{2}x=-\frac{9}{-2}
Whakawehe 7 ki te -2.
x^{2}-\frac{7}{2}x=\frac{9}{2}
Whakawehe -9 ki te -2.
x^{2}-\frac{7}{2}x+\left(-\frac{7}{4}\right)^{2}=\frac{9}{2}+\left(-\frac{7}{4}\right)^{2}
Whakawehea te -\frac{7}{2}, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -\frac{7}{4}. Nā, tāpiria te pūrua o te -\frac{7}{4} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}-\frac{7}{2}x+\frac{49}{16}=\frac{9}{2}+\frac{49}{16}
Pūruatia -\frac{7}{4} mā te pūrua i te taurunga me te tauraro o te hautanga.
x^{2}-\frac{7}{2}x+\frac{49}{16}=\frac{121}{16}
Tāpiri \frac{9}{2} ki te \frac{49}{16} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
\left(x-\frac{7}{4}\right)^{2}=\frac{121}{16}
Tauwehea x^{2}-\frac{7}{2}x+\frac{49}{16}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{7}{4}\right)^{2}}=\sqrt{\frac{121}{16}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x-\frac{7}{4}=\frac{11}{4} x-\frac{7}{4}=-\frac{11}{4}
Whakarūnātia.
x=\frac{9}{2} x=-1
Me tāpiri \frac{7}{4} ki ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}