Whakaoti mō x
x=3\sqrt{209}+34\approx 77.370496884
x=34-3\sqrt{209}\approx -9.370496884
Graph
Tohaina
Kua tāruatia ki te papatopenga
-2x^{2}+136x+1800=350
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
-2x^{2}+136x+1800-350=350-350
Me tango 350 mai i ngā taha e rua o te whārite.
-2x^{2}+136x+1800-350=0
Mā te tango i te 350 i a ia ake anō ka toe ko te 0.
-2x^{2}+136x+1450=0
Tango 350 mai i 1800.
x=\frac{-136±\sqrt{136^{2}-4\left(-2\right)\times 1450}}{2\left(-2\right)}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi -2 mō a, 136 mō b, me 1450 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-136±\sqrt{18496-4\left(-2\right)\times 1450}}{2\left(-2\right)}
Pūrua 136.
x=\frac{-136±\sqrt{18496+8\times 1450}}{2\left(-2\right)}
Whakareatia -4 ki te -2.
x=\frac{-136±\sqrt{18496+11600}}{2\left(-2\right)}
Whakareatia 8 ki te 1450.
x=\frac{-136±\sqrt{30096}}{2\left(-2\right)}
Tāpiri 18496 ki te 11600.
x=\frac{-136±12\sqrt{209}}{2\left(-2\right)}
Tuhia te pūtakerua o te 30096.
x=\frac{-136±12\sqrt{209}}{-4}
Whakareatia 2 ki te -2.
x=\frac{12\sqrt{209}-136}{-4}
Nā, me whakaoti te whārite x=\frac{-136±12\sqrt{209}}{-4} ina he tāpiri te ±. Tāpiri -136 ki te 12\sqrt{209}.
x=34-3\sqrt{209}
Whakawehe -136+12\sqrt{209} ki te -4.
x=\frac{-12\sqrt{209}-136}{-4}
Nā, me whakaoti te whārite x=\frac{-136±12\sqrt{209}}{-4} ina he tango te ±. Tango 12\sqrt{209} mai i -136.
x=3\sqrt{209}+34
Whakawehe -136-12\sqrt{209} ki te -4.
x=34-3\sqrt{209} x=3\sqrt{209}+34
Kua oti te whārite te whakatau.
-2x^{2}+136x+1800=350
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
-2x^{2}+136x+1800-1800=350-1800
Me tango 1800 mai i ngā taha e rua o te whārite.
-2x^{2}+136x=350-1800
Mā te tango i te 1800 i a ia ake anō ka toe ko te 0.
-2x^{2}+136x=-1450
Tango 1800 mai i 350.
\frac{-2x^{2}+136x}{-2}=-\frac{1450}{-2}
Whakawehea ngā taha e rua ki te -2.
x^{2}+\frac{136}{-2}x=-\frac{1450}{-2}
Mā te whakawehe ki te -2 ka wetekia te whakareanga ki te -2.
x^{2}-68x=-\frac{1450}{-2}
Whakawehe 136 ki te -2.
x^{2}-68x=725
Whakawehe -1450 ki te -2.
x^{2}-68x+\left(-34\right)^{2}=725+\left(-34\right)^{2}
Whakawehea te -68, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -34. Nā, tāpiria te pūrua o te -34 ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}-68x+1156=725+1156
Pūrua -34.
x^{2}-68x+1156=1881
Tāpiri 725 ki te 1156.
\left(x-34\right)^{2}=1881
Tauwehea x^{2}-68x+1156. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-34\right)^{2}}=\sqrt{1881}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x-34=3\sqrt{209} x-34=-3\sqrt{209}
Whakarūnātia.
x=3\sqrt{209}+34 x=34-3\sqrt{209}
Me tāpiri 34 ki ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}