Tīpoka ki ngā ihirangi matua
Tauwehe
Tick mark Image
Aromātai
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

a+b=13 ab=-2\times 7=-14
Whakatauwehea te kīanga mā te whakarōpū. Tuatahi, me tuhi anō te kīanga hei -2x^{2}+ax+bx+7. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
-1,14 -2,7
I te mea kua tōraro te ab, he tauaro ngā tohu o a me b. I te mea kua tōrunga te a+b, he nui ake te uara pū o te tau tōrunga i tō te tōraro. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua -14.
-1+14=13 -2+7=5
Tātaihia te tapeke mō ia takirua.
a=14 b=-1
Ko te otinga te takirua ka hoatu i te tapeke 13.
\left(-2x^{2}+14x\right)+\left(-x+7\right)
Tuhia anō te -2x^{2}+13x+7 hei \left(-2x^{2}+14x\right)+\left(-x+7\right).
2x\left(-x+7\right)-x+7
Whakatauwehea atu 2x i te -2x^{2}+14x.
\left(-x+7\right)\left(2x+1\right)
Whakatauwehea atu te kīanga pātahi -x+7 mā te whakamahi i te āhuatanga tātai tohatoha.
-2x^{2}+13x+7=0
Ka taea te huamaha pūrua te tauwehe mā te whakamahi i te huringa ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), ina ko x_{1} me x_{2} ngā otinga o te whārite pūrua ax^{2}+bx+c=0.
x=\frac{-13±\sqrt{13^{2}-4\left(-2\right)\times 7}}{2\left(-2\right)}
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-13±\sqrt{169-4\left(-2\right)\times 7}}{2\left(-2\right)}
Pūrua 13.
x=\frac{-13±\sqrt{169+8\times 7}}{2\left(-2\right)}
Whakareatia -4 ki te -2.
x=\frac{-13±\sqrt{169+56}}{2\left(-2\right)}
Whakareatia 8 ki te 7.
x=\frac{-13±\sqrt{225}}{2\left(-2\right)}
Tāpiri 169 ki te 56.
x=\frac{-13±15}{2\left(-2\right)}
Tuhia te pūtakerua o te 225.
x=\frac{-13±15}{-4}
Whakareatia 2 ki te -2.
x=\frac{2}{-4}
Nā, me whakaoti te whārite x=\frac{-13±15}{-4} ina he tāpiri te ±. Tāpiri -13 ki te 15.
x=-\frac{1}{2}
Whakahekea te hautanga \frac{2}{-4} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
x=-\frac{28}{-4}
Nā, me whakaoti te whārite x=\frac{-13±15}{-4} ina he tango te ±. Tango 15 mai i -13.
x=7
Whakawehe -28 ki te -4.
-2x^{2}+13x+7=-2\left(x-\left(-\frac{1}{2}\right)\right)\left(x-7\right)
Tauwehea te kīanga taketake mā te whakamahi i te ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Me whakakapi te -\frac{1}{2} mō te x_{1} me te 7 mō te x_{2}.
-2x^{2}+13x+7=-2\left(x+\frac{1}{2}\right)\left(x-7\right)
Whakamāmātia ngā kīanga katoa o te āhua p-\left(-q\right) ki te p+q.
-2x^{2}+13x+7=-2\times \frac{-2x-1}{-2}\left(x-7\right)
Tāpiri \frac{1}{2} ki te x mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
-2x^{2}+13x+7=\left(-2x-1\right)\left(x-7\right)
Whakakorea atu te tauwehe pūnoa nui rawa 2 i roto i te -2 me te 2.