Tīpoka ki ngā ihirangi matua
Whakaoti mō x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

2x^{2}-12x+14<0
Me whakarea te koreōrite ki te -1 kia tōrunga ai te tau whakarea o te pū tino teitei i -2x^{2}+12x-14. Nō te mea he <0 te -1, ka hurihia te ahunga koreōrite.
2x^{2}-12x+14=0
Kia whakaotia te koreōrite, me tauwehe te taha mauī. Ka taea te huamaha pūrua te tauwehe mā te whakamahi i te huringa ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), ina ko x_{1} me x_{2} ngā otinga o te whārite pūrua ax^{2}+bx+c=0.
x=\frac{-\left(-12\right)±\sqrt{\left(-12\right)^{2}-4\times 2\times 14}}{2\times 2}
Ka taea ngā whārite katoa o te momo ax^{2}+bx+c=0 te whakaoti mā te ture pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Whakakapia te 2 mō te a, te -12 mō te b, me te 14 mō te c i te ture pūrua.
x=\frac{12±4\sqrt{2}}{4}
Mahia ngā tātaitai.
x=\sqrt{2}+3 x=3-\sqrt{2}
Whakaotia te whārite x=\frac{12±4\sqrt{2}}{4} ina he tōrunga te ±, ina he tōraro te ±.
2\left(x-\left(\sqrt{2}+3\right)\right)\left(x-\left(3-\sqrt{2}\right)\right)<0
Tuhia anō te koreōrite mā te whakamahi i ngā otinga i whiwhi.
x-\left(\sqrt{2}+3\right)>0 x-\left(3-\sqrt{2}\right)<0
Kia tōraro te otinga, me tauaro rawa ngā tohu o te x-\left(\sqrt{2}+3\right) me te x-\left(3-\sqrt{2}\right). Whakaarohia te tauira ina he tōrunga te x-\left(\sqrt{2}+3\right) he tōraro te x-\left(3-\sqrt{2}\right).
x\in \emptyset
He teka tēnei mō tētahi x ahakoa.
x-\left(3-\sqrt{2}\right)>0 x-\left(\sqrt{2}+3\right)<0
Whakaarohia te tauira ina he tōrunga te x-\left(3-\sqrt{2}\right) he tōraro te x-\left(\sqrt{2}+3\right).
x\in \left(3-\sqrt{2},\sqrt{2}+3\right)
Te otinga e whakaea i ngā koreōrite e rua ko x\in \left(3-\sqrt{2},\sqrt{2}+3\right).
x\in \left(3-\sqrt{2},\sqrt{2}+3\right)
Ko te otinga whakamutunga ko te whakakotahi i ngā otinga kua whiwhi.