Whakaoti mō k
k=\frac{3y}{2}-x-6
Whakaoti mō x
x=\frac{3y}{2}-k-6
Graph
Tohaina
Kua tāruatia ki te papatopenga
2k=-2x+3y-12
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
\frac{2k}{2}=\frac{-2x+3y-12}{2}
Whakawehea ngā taha e rua ki te 2.
k=\frac{-2x+3y-12}{2}
Mā te whakawehe ki te 2 ka wetekia te whakareanga ki te 2.
k=\frac{3y}{2}-x-6
Whakawehe -2x+3y-12 ki te 2.
-2x-12=2k-3y
Tangohia te 3y mai i ngā taha e rua.
-2x=2k-3y+12
Me tāpiri te 12 ki ngā taha e rua.
-2x=12+2k-3y
He hanga arowhānui tō te whārite.
\frac{-2x}{-2}=\frac{12+2k-3y}{-2}
Whakawehea ngā taha e rua ki te -2.
x=\frac{12+2k-3y}{-2}
Mā te whakawehe ki te -2 ka wetekia te whakareanga ki te -2.
x=\frac{3y}{2}-k-6
Whakawehe 2k-3y+12 ki te -2.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}