Tauwehe
-2\left(t-5\right)\left(t+4\right)
Aromātai
-2\left(t-5\right)\left(t+4\right)
Tohaina
Kua tāruatia ki te papatopenga
2\left(-t^{2}+t+20\right)
Tauwehea te 2.
a+b=1 ab=-20=-20
Whakaarohia te -t^{2}+t+20. Whakatauwehea te kīanga mā te whakarōpū. Tuatahi, me tuhi anō te kīanga hei -t^{2}+at+bt+20. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
-1,20 -2,10 -4,5
I te mea kua tōraro te ab, he tauaro ngā tohu o a me b. I te mea kua tōrunga te a+b, he nui ake te uara pū o te tau tōrunga i tō te tōraro. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua -20.
-1+20=19 -2+10=8 -4+5=1
Tātaihia te tapeke mō ia takirua.
a=5 b=-4
Ko te otinga te takirua ka hoatu i te tapeke 1.
\left(-t^{2}+5t\right)+\left(-4t+20\right)
Tuhia anō te -t^{2}+t+20 hei \left(-t^{2}+5t\right)+\left(-4t+20\right).
-t\left(t-5\right)-4\left(t-5\right)
Tauwehea te -t i te tuatahi me te -4 i te rōpū tuarua.
\left(t-5\right)\left(-t-4\right)
Whakatauwehea atu te kīanga pātahi t-5 mā te whakamahi i te āhuatanga tātai tohatoha.
2\left(t-5\right)\left(-t-4\right)
Me tuhi anō te kīanga whakatauwehe katoa.
-2t^{2}+2t+40=0
Ka taea te huamaha pūrua te tauwehe mā te whakamahi i te huringa ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), ina ko x_{1} me x_{2} ngā otinga o te whārite pūrua ax^{2}+bx+c=0.
t=\frac{-2±\sqrt{2^{2}-4\left(-2\right)\times 40}}{2\left(-2\right)}
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
t=\frac{-2±\sqrt{4-4\left(-2\right)\times 40}}{2\left(-2\right)}
Pūrua 2.
t=\frac{-2±\sqrt{4+8\times 40}}{2\left(-2\right)}
Whakareatia -4 ki te -2.
t=\frac{-2±\sqrt{4+320}}{2\left(-2\right)}
Whakareatia 8 ki te 40.
t=\frac{-2±\sqrt{324}}{2\left(-2\right)}
Tāpiri 4 ki te 320.
t=\frac{-2±18}{2\left(-2\right)}
Tuhia te pūtakerua o te 324.
t=\frac{-2±18}{-4}
Whakareatia 2 ki te -2.
t=\frac{16}{-4}
Nā, me whakaoti te whārite t=\frac{-2±18}{-4} ina he tāpiri te ±. Tāpiri -2 ki te 18.
t=-4
Whakawehe 16 ki te -4.
t=-\frac{20}{-4}
Nā, me whakaoti te whārite t=\frac{-2±18}{-4} ina he tango te ±. Tango 18 mai i -2.
t=5
Whakawehe -20 ki te -4.
-2t^{2}+2t+40=-2\left(t-\left(-4\right)\right)\left(t-5\right)
Tauwehea te kīanga taketake mā te whakamahi i te ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Me whakakapi te -4 mō te x_{1} me te 5 mō te x_{2}.
-2t^{2}+2t+40=-2\left(t+4\right)\left(t-5\right)
Whakamāmātia ngā kīanga katoa o te āhua p-\left(-q\right) ki te p+q.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}