Whakaoti mō s
s=2\sqrt{31}+13\approx 24.135528726
s=13-2\sqrt{31}\approx 1.864471274
Tohaina
Kua tāruatia ki te papatopenga
-2s^{2}+52s=90
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
-2s^{2}+52s-90=90-90
Me tango 90 mai i ngā taha e rua o te whārite.
-2s^{2}+52s-90=0
Mā te tango i te 90 i a ia ake anō ka toe ko te 0.
s=\frac{-52±\sqrt{52^{2}-4\left(-2\right)\left(-90\right)}}{2\left(-2\right)}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi -2 mō a, 52 mō b, me -90 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
s=\frac{-52±\sqrt{2704-4\left(-2\right)\left(-90\right)}}{2\left(-2\right)}
Pūrua 52.
s=\frac{-52±\sqrt{2704+8\left(-90\right)}}{2\left(-2\right)}
Whakareatia -4 ki te -2.
s=\frac{-52±\sqrt{2704-720}}{2\left(-2\right)}
Whakareatia 8 ki te -90.
s=\frac{-52±\sqrt{1984}}{2\left(-2\right)}
Tāpiri 2704 ki te -720.
s=\frac{-52±8\sqrt{31}}{2\left(-2\right)}
Tuhia te pūtakerua o te 1984.
s=\frac{-52±8\sqrt{31}}{-4}
Whakareatia 2 ki te -2.
s=\frac{8\sqrt{31}-52}{-4}
Nā, me whakaoti te whārite s=\frac{-52±8\sqrt{31}}{-4} ina he tāpiri te ±. Tāpiri -52 ki te 8\sqrt{31}.
s=13-2\sqrt{31}
Whakawehe -52+8\sqrt{31} ki te -4.
s=\frac{-8\sqrt{31}-52}{-4}
Nā, me whakaoti te whārite s=\frac{-52±8\sqrt{31}}{-4} ina he tango te ±. Tango 8\sqrt{31} mai i -52.
s=2\sqrt{31}+13
Whakawehe -52-8\sqrt{31} ki te -4.
s=13-2\sqrt{31} s=2\sqrt{31}+13
Kua oti te whārite te whakatau.
-2s^{2}+52s=90
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
\frac{-2s^{2}+52s}{-2}=\frac{90}{-2}
Whakawehea ngā taha e rua ki te -2.
s^{2}+\frac{52}{-2}s=\frac{90}{-2}
Mā te whakawehe ki te -2 ka wetekia te whakareanga ki te -2.
s^{2}-26s=\frac{90}{-2}
Whakawehe 52 ki te -2.
s^{2}-26s=-45
Whakawehe 90 ki te -2.
s^{2}-26s+\left(-13\right)^{2}=-45+\left(-13\right)^{2}
Whakawehea te -26, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -13. Nā, tāpiria te pūrua o te -13 ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
s^{2}-26s+169=-45+169
Pūrua -13.
s^{2}-26s+169=124
Tāpiri -45 ki te 169.
\left(s-13\right)^{2}=124
Tauwehea s^{2}-26s+169. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(s-13\right)^{2}}=\sqrt{124}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
s-13=2\sqrt{31} s-13=-2\sqrt{31}
Whakarūnātia.
s=2\sqrt{31}+13 s=13-2\sqrt{31}
Me tāpiri 13 ki ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}