Whakaoti mō x
x=\frac{a}{2}+\frac{1}{2a}
a\neq 0
Whakaoti mō a (complex solution)
a=\sqrt{x^{2}-1}+x
a=-\sqrt{x^{2}-1}+x
Whakaoti mō a
a=\sqrt{x^{2}-1}+x
a=-\sqrt{x^{2}-1}+x\text{, }|x|\geq 1
Graph
Tohaina
Kua tāruatia ki te papatopenga
-2ax+1=-a^{2}
Tangohia te a^{2} mai i ngā taha e rua. Ko te tau i tango i te kore ka hua ko tōna korenga.
-2ax=-a^{2}-1
Tangohia te 1 mai i ngā taha e rua.
\left(-2a\right)x=-a^{2}-1
He hanga arowhānui tō te whārite.
\frac{\left(-2a\right)x}{-2a}=\frac{-a^{2}-1}{-2a}
Whakawehea ngā taha e rua ki te -2a.
x=\frac{-a^{2}-1}{-2a}
Mā te whakawehe ki te -2a ka wetekia te whakareanga ki te -2a.
x=\frac{a}{2}+\frac{1}{2a}
Whakawehe -a^{2}-1 ki te -2a.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}