Tauwehe
-a\left(2a+1\right)
Aromātai
-a\left(2a+1\right)
Tohaina
Kua tāruatia ki te papatopenga
a\left(-2a-1\right)
Tauwehea te a.
-2a^{2}-a=0
Ka taea te huamaha pūrua te tauwehe mā te whakamahi i te huringa ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), ina ko x_{1} me x_{2} ngā otinga o te whārite pūrua ax^{2}+bx+c=0.
a=\frac{-\left(-1\right)±\sqrt{1}}{2\left(-2\right)}
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
a=\frac{-\left(-1\right)±1}{2\left(-2\right)}
Tuhia te pūtakerua o te 1.
a=\frac{1±1}{2\left(-2\right)}
Ko te tauaro o -1 ko 1.
a=\frac{1±1}{-4}
Whakareatia 2 ki te -2.
a=\frac{2}{-4}
Nā, me whakaoti te whārite a=\frac{1±1}{-4} ina he tāpiri te ±. Tāpiri 1 ki te 1.
a=-\frac{1}{2}
Whakahekea te hautanga \frac{2}{-4} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
a=\frac{0}{-4}
Nā, me whakaoti te whārite a=\frac{1±1}{-4} ina he tango te ±. Tango 1 mai i 1.
a=0
Whakawehe 0 ki te -4.
-2a^{2}-a=-2\left(a-\left(-\frac{1}{2}\right)\right)a
Tauwehea te kīanga taketake mā te whakamahi i te ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Me whakakapi te -\frac{1}{2} mō te x_{1} me te 0 mō te x_{2}.
-2a^{2}-a=-2\left(a+\frac{1}{2}\right)a
Whakamāmātia ngā kīanga katoa o te āhua p-\left(-q\right) ki te p+q.
-2a^{2}-a=-2\times \frac{-2a-1}{-2}a
Tāpiri \frac{1}{2} ki te a mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
-2a^{2}-a=\left(-2a-1\right)a
Whakakorea atu te tauwehe pūnoa nui rawa 2 i roto i te -2 me te -2.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}