Whakaoti mō a
a = \frac{\sqrt{7} + 1}{2} \approx 1.822875656
a=\frac{1-\sqrt{7}}{2}\approx -0.822875656
Tohaina
Kua tāruatia ki te papatopenga
-2a^{2}-2a-3+4a^{2}=0
Me tāpiri te 4a^{2} ki ngā taha e rua.
2a^{2}-2a-3=0
Pahekotia te -2a^{2} me 4a^{2}, ka 2a^{2}.
a=\frac{-\left(-2\right)±\sqrt{\left(-2\right)^{2}-4\times 2\left(-3\right)}}{2\times 2}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 2 mō a, -2 mō b, me -3 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
a=\frac{-\left(-2\right)±\sqrt{4-4\times 2\left(-3\right)}}{2\times 2}
Pūrua -2.
a=\frac{-\left(-2\right)±\sqrt{4-8\left(-3\right)}}{2\times 2}
Whakareatia -4 ki te 2.
a=\frac{-\left(-2\right)±\sqrt{4+24}}{2\times 2}
Whakareatia -8 ki te -3.
a=\frac{-\left(-2\right)±\sqrt{28}}{2\times 2}
Tāpiri 4 ki te 24.
a=\frac{-\left(-2\right)±2\sqrt{7}}{2\times 2}
Tuhia te pūtakerua o te 28.
a=\frac{2±2\sqrt{7}}{2\times 2}
Ko te tauaro o -2 ko 2.
a=\frac{2±2\sqrt{7}}{4}
Whakareatia 2 ki te 2.
a=\frac{2\sqrt{7}+2}{4}
Nā, me whakaoti te whārite a=\frac{2±2\sqrt{7}}{4} ina he tāpiri te ±. Tāpiri 2 ki te 2\sqrt{7}.
a=\frac{\sqrt{7}+1}{2}
Whakawehe 2+2\sqrt{7} ki te 4.
a=\frac{2-2\sqrt{7}}{4}
Nā, me whakaoti te whārite a=\frac{2±2\sqrt{7}}{4} ina he tango te ±. Tango 2\sqrt{7} mai i 2.
a=\frac{1-\sqrt{7}}{2}
Whakawehe 2-2\sqrt{7} ki te 4.
a=\frac{\sqrt{7}+1}{2} a=\frac{1-\sqrt{7}}{2}
Kua oti te whārite te whakatau.
-2a^{2}-2a-3+4a^{2}=0
Me tāpiri te 4a^{2} ki ngā taha e rua.
2a^{2}-2a-3=0
Pahekotia te -2a^{2} me 4a^{2}, ka 2a^{2}.
2a^{2}-2a=3
Me tāpiri te 3 ki ngā taha e rua. Ko te tau i tāpiria he kore ka hua koia tonu.
\frac{2a^{2}-2a}{2}=\frac{3}{2}
Whakawehea ngā taha e rua ki te 2.
a^{2}+\left(-\frac{2}{2}\right)a=\frac{3}{2}
Mā te whakawehe ki te 2 ka wetekia te whakareanga ki te 2.
a^{2}-a=\frac{3}{2}
Whakawehe -2 ki te 2.
a^{2}-a+\left(-\frac{1}{2}\right)^{2}=\frac{3}{2}+\left(-\frac{1}{2}\right)^{2}
Whakawehea te -1, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -\frac{1}{2}. Nā, tāpiria te pūrua o te -\frac{1}{2} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
a^{2}-a+\frac{1}{4}=\frac{3}{2}+\frac{1}{4}
Pūruatia -\frac{1}{2} mā te pūrua i te taurunga me te tauraro o te hautanga.
a^{2}-a+\frac{1}{4}=\frac{7}{4}
Tāpiri \frac{3}{2} ki te \frac{1}{4} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
\left(a-\frac{1}{2}\right)^{2}=\frac{7}{4}
Tauwehea a^{2}-a+\frac{1}{4}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(a-\frac{1}{2}\right)^{2}}=\sqrt{\frac{7}{4}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
a-\frac{1}{2}=\frac{\sqrt{7}}{2} a-\frac{1}{2}=-\frac{\sqrt{7}}{2}
Whakarūnātia.
a=\frac{\sqrt{7}+1}{2} a=\frac{1-\sqrt{7}}{2}
Me tāpiri \frac{1}{2} ki ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}