Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image
Tauwehe
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\left(-2a^{2}\right)^{1}\times \frac{1}{-a^{2}}
Whakamahia ngā ture taupū hei whakarūnā i te kīanga.
\left(-2\right)^{1}\left(a^{2}\right)^{1}\left(-1\right)\times \frac{1}{a^{2}}
Hei hiki i te hua o ngā tau e rua, neke atu rānei ki tētahi pū, hīkina ia tau ki te pū ka tuhi ko tāna hua.
\left(-2\right)^{1}\left(-1\right)\left(a^{2}\right)^{1}\times \frac{1}{a^{2}}
Whakamahia te Āhuatanga Kōaro o te Whakareanga.
\left(-2\right)^{1}\left(-1\right)a^{2}a^{2\left(-1\right)}
Hei hiki pū ki tētahi pū anō, me whakarea ngā taupū.
\left(-2\right)^{1}\left(-1\right)a^{2}a^{-2}
Whakareatia 2 ki te -1.
\left(-2\right)^{1}\left(-1\right)a^{2-2}
Hei whakarea pū o te pūtake ōrite, tāpiri ana taupū.
\left(-2\right)^{1}\left(-1\right)a^{0}
Tāpirihia ngā taupū 2 me -2.
-2\left(-1\right)a^{0}
Hīkina te -2 ki te pū 1.
2a^{0}
Whakareatia -2 ki te -1.
2\times 1
Mō tētahi kupu t mahue te 0, t^{0}=1.
2
Mō tētahi kupu t, t\times 1=t me 1t=t.
\frac{\left(-2\right)^{1}a^{2}}{-a^{2}}
Whakamahia ngā ture taupū hei whakarūnā i te kīanga.
\frac{\left(-2\right)^{1}a^{2-2}}{-1}
Hei whakawehe i ngā pū o te pūtake kotahi, tangohia te taupū o te tauraro mai i te taupū o te taurunga.
\frac{\left(-2\right)^{1}a^{0}}{-1}
Tango 2 mai i 2.
\frac{\left(-2\right)^{1}}{-1}
Mō tētahi tau a mahue te 0, a^{0}=1.
2
Whakawehe -2 ki te -1.