Whakaoti mō y
y=-\frac{1}{2}=-0.5
Graph
Tohaina
Kua tāruatia ki te papatopenga
-2y-6=4y-1+2\left(6y+2\right)
Whakamahia te āhuatanga tohatoha hei whakarea te -2 ki te y+3.
-2y-6=4y-1+12y+4
Whakamahia te āhuatanga tohatoha hei whakarea te 2 ki te 6y+2.
-2y-6=16y-1+4
Pahekotia te 4y me 12y, ka 16y.
-2y-6=16y+3
Tāpirihia te -1 ki te 4, ka 3.
-2y-6-16y=3
Tangohia te 16y mai i ngā taha e rua.
-18y-6=3
Pahekotia te -2y me -16y, ka -18y.
-18y=3+6
Me tāpiri te 6 ki ngā taha e rua.
-18y=9
Tāpirihia te 3 ki te 6, ka 9.
y=\frac{9}{-18}
Whakawehea ngā taha e rua ki te -18.
y=-\frac{1}{2}
Whakahekea te hautanga \frac{9}{-18} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 9.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}