Whakaoti mō y
y=-\frac{1}{4}=-0.25
Graph
Tohaina
Kua tāruatia ki te papatopenga
18y-14-2y=4\left(y-2\right)-9
Whakamahia te āhuatanga tohatoha hei whakarea te -2 ki te -9y+7.
16y-14=4\left(y-2\right)-9
Pahekotia te 18y me -2y, ka 16y.
16y-14=4y-8-9
Whakamahia te āhuatanga tohatoha hei whakarea te 4 ki te y-2.
16y-14=4y-17
Tangohia te 9 i te -8, ka -17.
16y-14-4y=-17
Tangohia te 4y mai i ngā taha e rua.
12y-14=-17
Pahekotia te 16y me -4y, ka 12y.
12y=-17+14
Me tāpiri te 14 ki ngā taha e rua.
12y=-3
Tāpirihia te -17 ki te 14, ka -3.
y=\frac{-3}{12}
Whakawehea ngā taha e rua ki te 12.
y=-\frac{1}{4}
Whakahekea te hautanga \frac{-3}{12} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 3.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}