Aromātai
-\frac{79}{12}\approx -6.583333333
Tauwehe
-\frac{79}{12} = -6\frac{7}{12} = -6.583333333333333
Tohaina
Kua tāruatia ki te papatopenga
-\frac{8+1}{4}-\frac{4\times 3+1}{3}
Whakareatia te 2 ki te 4, ka 8.
-\frac{9}{4}-\frac{4\times 3+1}{3}
Tāpirihia te 8 ki te 1, ka 9.
-\frac{9}{4}-\frac{12+1}{3}
Whakareatia te 4 ki te 3, ka 12.
-\frac{9}{4}-\frac{13}{3}
Tāpirihia te 12 ki te 1, ka 13.
-\frac{27}{12}-\frac{52}{12}
Ko te maha noa iti rawa atu o 4 me 3 ko 12. Me tahuri -\frac{9}{4} me \frac{13}{3} ki te hautau me te tautūnga 12.
\frac{-27-52}{12}
Tā te mea he rite te tauraro o -\frac{27}{12} me \frac{52}{12}, me tango rāua mā te tango i ō raua taurunga.
-\frac{79}{12}
Tangohia te 52 i te -27, ka -79.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}