Aromātai
-\frac{10}{3}\approx -3.333333333
Tauwehe
-\frac{10}{3} = -3\frac{1}{3} = -3.3333333333333335
Tohaina
Kua tāruatia ki te papatopenga
\frac{\left(-\frac{2\times 4+1}{4}\right)\times 25}{\frac{15}{32}\times 36}
Whakawehe \frac{-\frac{2\times 4+1}{4}}{\frac{15}{32}} ki te \frac{36}{25} mā te whakarea \frac{-\frac{2\times 4+1}{4}}{\frac{15}{32}} ki te tau huripoki o \frac{36}{25}.
\frac{\left(-\frac{8+1}{4}\right)\times 25}{\frac{15}{32}\times 36}
Whakareatia te 2 ki te 4, ka 8.
\frac{-\frac{9}{4}\times 25}{\frac{15}{32}\times 36}
Tāpirihia te 8 ki te 1, ka 9.
\frac{\frac{-9\times 25}{4}}{\frac{15}{32}\times 36}
Tuhia te -\frac{9}{4}\times 25 hei hautanga kotahi.
\frac{\frac{-225}{4}}{\frac{15}{32}\times 36}
Whakareatia te -9 ki te 25, ka -225.
\frac{-\frac{225}{4}}{\frac{15}{32}\times 36}
Ka taea te hautanga \frac{-225}{4} te tuhi anō ko -\frac{225}{4} mā te tango i te tohu tōraro.
\frac{-\frac{225}{4}}{\frac{15\times 36}{32}}
Tuhia te \frac{15}{32}\times 36 hei hautanga kotahi.
\frac{-\frac{225}{4}}{\frac{540}{32}}
Whakareatia te 15 ki te 36, ka 540.
\frac{-\frac{225}{4}}{\frac{135}{8}}
Whakahekea te hautanga \frac{540}{32} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 4.
-\frac{225}{4}\times \frac{8}{135}
Whakawehe -\frac{225}{4} ki te \frac{135}{8} mā te whakarea -\frac{225}{4} ki te tau huripoki o \frac{135}{8}.
\frac{-225\times 8}{4\times 135}
Me whakarea te -\frac{225}{4} ki te \frac{8}{135} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{-1800}{540}
Mahia ngā whakarea i roto i te hautanga \frac{-225\times 8}{4\times 135}.
-\frac{10}{3}
Whakahekea te hautanga \frac{-1800}{540} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 180.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}