Aromātai
-\frac{50}{3}\approx -16.666666667
Tauwehe
-\frac{50}{3} = -16\frac{2}{3} = -16.666666666666668
Tohaina
Kua tāruatia ki te papatopenga
-8+\frac{1}{3}\left(201+3\right)^{0}-\left(-\frac{1}{3}\right)^{-2}
Tātaihia te 2 mā te pū o 3, kia riro ko 8.
-8+\frac{1}{3}\times 204^{0}-\left(-\frac{1}{3}\right)^{-2}
Tāpirihia te 201 ki te 3, ka 204.
-8+\frac{1}{3}\times 1-\left(-\frac{1}{3}\right)^{-2}
Tātaihia te 204 mā te pū o 0, kia riro ko 1.
-8+\frac{1}{3}-\left(-\frac{1}{3}\right)^{-2}
Whakareatia te \frac{1}{3} ki te 1, ka \frac{1}{3}.
-\frac{23}{3}-\left(-\frac{1}{3}\right)^{-2}
Tāpirihia te -8 ki te \frac{1}{3}, ka -\frac{23}{3}.
-\frac{23}{3}-9
Tātaihia te -\frac{1}{3} mā te pū o -2, kia riro ko 9.
-\frac{50}{3}
Tangohia te 9 i te -\frac{23}{3}, ka -\frac{50}{3}.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}