Whakaoti mō x
x=-2
x=0
Graph
Pātaitai
Quadratic Equation
5 raruraru e ōrite ana ki:
- 2 = \frac { 1 } { 1 + x } - \frac { 3 } { 1 - x }
Tohaina
Kua tāruatia ki te papatopenga
-2\left(x-1\right)\left(x+1\right)=x-1-\left(-\left(1+x\right)\times 3\right)
Tē taea kia ōrite te tāupe x ki tētahi o ngā uara -1,1 nā te kore tautuhi i te whakawehenga mā te kore. Me whakarea ngā taha e rua o te whārite ki te \left(x-1\right)\left(x+1\right), arā, te tauraro pātahi he tino iti rawa te kitea o 1+x,1-x.
\left(-2x+2\right)\left(x+1\right)=x-1-\left(-\left(1+x\right)\times 3\right)
Whakamahia te āhuatanga tohatoha hei whakarea te -2 ki te x-1.
-2x^{2}+2=x-1-\left(-\left(1+x\right)\times 3\right)
Whakamahia te āhuatanga tuaritanga hei whakarea te -2x+2 ki te x+1 ka whakakotahi i ngā kupu rite.
-2x^{2}+2=x-1-\left(-3\left(1+x\right)\right)
Whakareatia te -1 ki te 3, ka -3.
-2x^{2}+2=x-1-\left(-3-3x\right)
Whakamahia te āhuatanga tohatoha hei whakarea te -3 ki te 1+x.
-2x^{2}+2=x-1+3+3x
Hei kimi i te tauaro o -3-3x, kimihia te tauaro o ia taurangi.
-2x^{2}+2=x+2+3x
Tāpirihia te -1 ki te 3, ka 2.
-2x^{2}+2=4x+2
Pahekotia te x me 3x, ka 4x.
-2x^{2}+2-4x=2
Tangohia te 4x mai i ngā taha e rua.
-2x^{2}+2-4x-2=0
Tangohia te 2 mai i ngā taha e rua.
-2x^{2}-4x=0
Tangohia te 2 i te 2, ka 0.
x=\frac{-\left(-4\right)±\sqrt{\left(-4\right)^{2}}}{2\left(-2\right)}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi -2 mō a, -4 mō b, me 0 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-4\right)±4}{2\left(-2\right)}
Tuhia te pūtakerua o te \left(-4\right)^{2}.
x=\frac{4±4}{2\left(-2\right)}
Ko te tauaro o -4 ko 4.
x=\frac{4±4}{-4}
Whakareatia 2 ki te -2.
x=\frac{8}{-4}
Nā, me whakaoti te whārite x=\frac{4±4}{-4} ina he tāpiri te ±. Tāpiri 4 ki te 4.
x=-2
Whakawehe 8 ki te -4.
x=\frac{0}{-4}
Nā, me whakaoti te whārite x=\frac{4±4}{-4} ina he tango te ±. Tango 4 mai i 4.
x=0
Whakawehe 0 ki te -4.
x=-2 x=0
Kua oti te whārite te whakatau.
-2\left(x-1\right)\left(x+1\right)=x-1-\left(-\left(1+x\right)\times 3\right)
Tē taea kia ōrite te tāupe x ki tētahi o ngā uara -1,1 nā te kore tautuhi i te whakawehenga mā te kore. Me whakarea ngā taha e rua o te whārite ki te \left(x-1\right)\left(x+1\right), arā, te tauraro pātahi he tino iti rawa te kitea o 1+x,1-x.
\left(-2x+2\right)\left(x+1\right)=x-1-\left(-\left(1+x\right)\times 3\right)
Whakamahia te āhuatanga tohatoha hei whakarea te -2 ki te x-1.
-2x^{2}+2=x-1-\left(-\left(1+x\right)\times 3\right)
Whakamahia te āhuatanga tuaritanga hei whakarea te -2x+2 ki te x+1 ka whakakotahi i ngā kupu rite.
-2x^{2}+2=x-1-\left(-3\left(1+x\right)\right)
Whakareatia te -1 ki te 3, ka -3.
-2x^{2}+2=x-1-\left(-3-3x\right)
Whakamahia te āhuatanga tohatoha hei whakarea te -3 ki te 1+x.
-2x^{2}+2=x-1+3+3x
Hei kimi i te tauaro o -3-3x, kimihia te tauaro o ia taurangi.
-2x^{2}+2=x+2+3x
Tāpirihia te -1 ki te 3, ka 2.
-2x^{2}+2=4x+2
Pahekotia te x me 3x, ka 4x.
-2x^{2}+2-4x=2
Tangohia te 4x mai i ngā taha e rua.
-2x^{2}-4x=2-2
Tangohia te 2 mai i ngā taha e rua.
-2x^{2}-4x=0
Tangohia te 2 i te 2, ka 0.
\frac{-2x^{2}-4x}{-2}=\frac{0}{-2}
Whakawehea ngā taha e rua ki te -2.
x^{2}+\left(-\frac{4}{-2}\right)x=\frac{0}{-2}
Mā te whakawehe ki te -2 ka wetekia te whakareanga ki te -2.
x^{2}+2x=\frac{0}{-2}
Whakawehe -4 ki te -2.
x^{2}+2x=0
Whakawehe 0 ki te -2.
x^{2}+2x+1^{2}=1^{2}
Whakawehea te 2, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te 1. Nā, tāpiria te pūrua o te 1 ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}+2x+1=1
Pūrua 1.
\left(x+1\right)^{2}=1
Tauwehea x^{2}+2x+1. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+1\right)^{2}}=\sqrt{1}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x+1=1 x+1=-1
Whakarūnātia.
x=0 x=-2
Me tango 1 mai i ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}