Whakaoti mō n
n=13
Tohaina
Kua tāruatia ki te papatopenga
-11n=-\left(n+18\right)-14\left(n-5\right)
Pahekotia te -19n me 8n, ka -11n.
-11n=-n-18-14\left(n-5\right)
Hei kimi i te tauaro o n+18, kimihia te tauaro o ia taurangi.
-11n=-n-18-14n+70
Whakamahia te āhuatanga tohatoha hei whakarea te -14 ki te n-5.
-11n=-15n-18+70
Pahekotia te -n me -14n, ka -15n.
-11n=-15n+52
Tāpirihia te -18 ki te 70, ka 52.
-11n+15n=52
Me tāpiri te 15n ki ngā taha e rua.
4n=52
Pahekotia te -11n me 15n, ka 4n.
n=\frac{52}{4}
Whakawehea ngā taha e rua ki te 4.
n=13
Whakawehea te 52 ki te 4, kia riro ko 13.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}