Whakaoti mō x
x=1
x=0
Graph
Tohaina
Kua tāruatia ki te papatopenga
-18x^{2}+18x=0
Whakamahia te āhuatanga tohatoha hei whakarea te -18x ki te x-1.
x\left(-18x+18\right)=0
Tauwehea te x.
x=0 x=1
Hei kimi otinga whārite, me whakaoti te x=0 me te -18x+18=0.
-18x^{2}+18x=0
Whakamahia te āhuatanga tohatoha hei whakarea te -18x ki te x-1.
x=\frac{-18±\sqrt{18^{2}}}{2\left(-18\right)}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi -18 mō a, 18 mō b, me 0 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-18±18}{2\left(-18\right)}
Tuhia te pūtakerua o te 18^{2}.
x=\frac{-18±18}{-36}
Whakareatia 2 ki te -18.
x=\frac{0}{-36}
Nā, me whakaoti te whārite x=\frac{-18±18}{-36} ina he tāpiri te ±. Tāpiri -18 ki te 18.
x=0
Whakawehe 0 ki te -36.
x=-\frac{36}{-36}
Nā, me whakaoti te whārite x=\frac{-18±18}{-36} ina he tango te ±. Tango 18 mai i -18.
x=1
Whakawehe -36 ki te -36.
x=0 x=1
Kua oti te whārite te whakatau.
-18x^{2}+18x=0
Whakamahia te āhuatanga tohatoha hei whakarea te -18x ki te x-1.
\frac{-18x^{2}+18x}{-18}=\frac{0}{-18}
Whakawehea ngā taha e rua ki te -18.
x^{2}+\frac{18}{-18}x=\frac{0}{-18}
Mā te whakawehe ki te -18 ka wetekia te whakareanga ki te -18.
x^{2}-x=\frac{0}{-18}
Whakawehe 18 ki te -18.
x^{2}-x=0
Whakawehe 0 ki te -18.
x^{2}-x+\left(-\frac{1}{2}\right)^{2}=\left(-\frac{1}{2}\right)^{2}
Whakawehea te -1, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -\frac{1}{2}. Nā, tāpiria te pūrua o te -\frac{1}{2} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}-x+\frac{1}{4}=\frac{1}{4}
Pūruatia -\frac{1}{2} mā te pūrua i te taurunga me te tauraro o te hautanga.
\left(x-\frac{1}{2}\right)^{2}=\frac{1}{4}
Tauwehea x^{2}-x+\frac{1}{4}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{1}{2}\right)^{2}}=\sqrt{\frac{1}{4}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x-\frac{1}{2}=\frac{1}{2} x-\frac{1}{2}=-\frac{1}{2}
Whakarūnātia.
x=1 x=0
Me tāpiri \frac{1}{2} ki ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}