Whakaoti mō x
x=\frac{1}{6}\approx 0.166666667
x = \frac{4}{3} = 1\frac{1}{3} \approx 1.333333333
Graph
Tohaina
Kua tāruatia ki te papatopenga
-18x^{2}+27x=4
Me tāpiri te 27x ki ngā taha e rua.
-18x^{2}+27x-4=0
Tangohia te 4 mai i ngā taha e rua.
a+b=27 ab=-18\left(-4\right)=72
Hei whakaoti i te whārite, whakatauwehea te taha mauī mā te whakarōpū. Tuatahi, me tuhi anō te taha mauī hei -18x^{2}+ax+bx-4. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
1,72 2,36 3,24 4,18 6,12 8,9
I te mea kua tōrunga te ab, he ōrite te tohu o a me b. I te mea kua tōrunga te a+b, he tōrunga hoki a a me b. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua 72.
1+72=73 2+36=38 3+24=27 4+18=22 6+12=18 8+9=17
Tātaihia te tapeke mō ia takirua.
a=24 b=3
Ko te otinga te takirua ka hoatu i te tapeke 27.
\left(-18x^{2}+24x\right)+\left(3x-4\right)
Tuhia anō te -18x^{2}+27x-4 hei \left(-18x^{2}+24x\right)+\left(3x-4\right).
-6x\left(3x-4\right)+3x-4
Whakatauwehea atu -6x i te -18x^{2}+24x.
\left(3x-4\right)\left(-6x+1\right)
Whakatauwehea atu te kīanga pātahi 3x-4 mā te whakamahi i te āhuatanga tātai tohatoha.
x=\frac{4}{3} x=\frac{1}{6}
Hei kimi otinga whārite, me whakaoti te 3x-4=0 me te -6x+1=0.
-18x^{2}+27x=4
Me tāpiri te 27x ki ngā taha e rua.
-18x^{2}+27x-4=0
Tangohia te 4 mai i ngā taha e rua.
x=\frac{-27±\sqrt{27^{2}-4\left(-18\right)\left(-4\right)}}{2\left(-18\right)}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi -18 mō a, 27 mō b, me -4 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-27±\sqrt{729-4\left(-18\right)\left(-4\right)}}{2\left(-18\right)}
Pūrua 27.
x=\frac{-27±\sqrt{729+72\left(-4\right)}}{2\left(-18\right)}
Whakareatia -4 ki te -18.
x=\frac{-27±\sqrt{729-288}}{2\left(-18\right)}
Whakareatia 72 ki te -4.
x=\frac{-27±\sqrt{441}}{2\left(-18\right)}
Tāpiri 729 ki te -288.
x=\frac{-27±21}{2\left(-18\right)}
Tuhia te pūtakerua o te 441.
x=\frac{-27±21}{-36}
Whakareatia 2 ki te -18.
x=-\frac{6}{-36}
Nā, me whakaoti te whārite x=\frac{-27±21}{-36} ina he tāpiri te ±. Tāpiri -27 ki te 21.
x=\frac{1}{6}
Whakahekea te hautanga \frac{-6}{-36} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 6.
x=-\frac{48}{-36}
Nā, me whakaoti te whārite x=\frac{-27±21}{-36} ina he tango te ±. Tango 21 mai i -27.
x=\frac{4}{3}
Whakahekea te hautanga \frac{-48}{-36} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 12.
x=\frac{1}{6} x=\frac{4}{3}
Kua oti te whārite te whakatau.
-18x^{2}+27x=4
Me tāpiri te 27x ki ngā taha e rua.
\frac{-18x^{2}+27x}{-18}=\frac{4}{-18}
Whakawehea ngā taha e rua ki te -18.
x^{2}+\frac{27}{-18}x=\frac{4}{-18}
Mā te whakawehe ki te -18 ka wetekia te whakareanga ki te -18.
x^{2}-\frac{3}{2}x=\frac{4}{-18}
Whakahekea te hautanga \frac{27}{-18} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 9.
x^{2}-\frac{3}{2}x=-\frac{2}{9}
Whakahekea te hautanga \frac{4}{-18} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
x^{2}-\frac{3}{2}x+\left(-\frac{3}{4}\right)^{2}=-\frac{2}{9}+\left(-\frac{3}{4}\right)^{2}
Whakawehea te -\frac{3}{2}, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -\frac{3}{4}. Nā, tāpiria te pūrua o te -\frac{3}{4} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}-\frac{3}{2}x+\frac{9}{16}=-\frac{2}{9}+\frac{9}{16}
Pūruatia -\frac{3}{4} mā te pūrua i te taurunga me te tauraro o te hautanga.
x^{2}-\frac{3}{2}x+\frac{9}{16}=\frac{49}{144}
Tāpiri -\frac{2}{9} ki te \frac{9}{16} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
\left(x-\frac{3}{4}\right)^{2}=\frac{49}{144}
Tauwehea x^{2}-\frac{3}{2}x+\frac{9}{16}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{3}{4}\right)^{2}}=\sqrt{\frac{49}{144}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x-\frac{3}{4}=\frac{7}{12} x-\frac{3}{4}=-\frac{7}{12}
Whakarūnātia.
x=\frac{4}{3} x=\frac{1}{6}
Me tāpiri \frac{3}{4} ki ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}